# **Preface**

Thanks for using our MPPT Solar Pump Inverter.

This manual tells you how to use it correctly. Please read this manual carefully and fully, understanding the safety requirement and cautions before using (installation, operation, maintain, checking, and etc...).

Inside the manual includes all the : required parameter settings and program features of our solar pump inverter.

The main features for the MPPT solar pump inverters:

- 1- Hybrid function to accept AC and DC at same time
- 2- Wide input voltage range:

220V model: DC 150-450V (DC 80-450V for 110V motor)

380V model: DC 250-900V

- 3- Easy drive for 220V single phase pump
- 4- Stable running and low frequency fluctuation
- 5- All-round protection and inverter no burn
- 6- Auto start and stop function
- 7- Adapt to various pumps, like AM, PMSM, submersible pump, surface pump etc.

.....

# Content

| Chapter 1 Before use                                                                                                                 | 02 |
|--------------------------------------------------------------------------------------------------------------------------------------|----|
| Chapter 2 Solar pumping system introduction                                                                                          | 03 |
| Chapter 3 Solar pump inverter introduction                                                                                           | 04 |
| <ul><li>3.1 Model and nameplate</li><li>3.2 Model specification</li><li>3.3 Technical specification</li><li>3.4 Dimensions</li></ul> | 05 |
| Chapter 4 Operation keypad description                                                                                               | 10 |
| Chapter 5 Terminals and wiring and operation                                                                                         | 11 |
| 5.1 Terminals                                                                                                                        | 13 |
| Charter 6 Simple parameter list                                                                                                      | 16 |
| Chapter 7 Explanation of important parameters                                                                                        | 33 |
| Chapter 8 Monitoring parameters of Solar Pump Inverter                                                                               | 38 |
| Chapter 9 Trouble-shooting and Solutions                                                                                             | 39 |
| Appendix 1 Instructions for driving 1 Phase 220V Pump43                                                                              |    |
| Appendix 2 Supplementary instructions for drive PMSM pumps44                                                                         |    |

#### Chapter 1.Before use

CAUTION: Properly check the delivery before installation. Never install the drive when you find it damaged or lack a component. Incomplete or defective installation might cause accidents.

CAUTION: To ensure effective cooling, the drive must be installed vertically with at least 10 cm space above and below the casing.

CAUTION: Do not let the drilling chips fall into the drive fin or fan during installation. This might affect the heat dissipation.

WARNING: The connection of the drive must be carried out by qualified personnel only. Unqualified handling might lead to shock, burn, or death.

WARNING: Please double-check that input power has been disconnected before connecting the device, otherwise electrocution or fire can be caused.

WARNING: The earth terminal must be reliably grounded, otherwise touching the drive shell might lead to a shock.

WARNING: Selection of PV module type, motor load and drive must be adequate, or the equipment might get damaged.

WARNING: Grounding of this electrical equipment is mandatory. Never run the pump system when the ground wire is not connected to proper ground. Ignoring this instruction can lead to electrocution.

WARNING: Do not modify the connection while the system is connected to power, or touching any part of it might cause electrocution

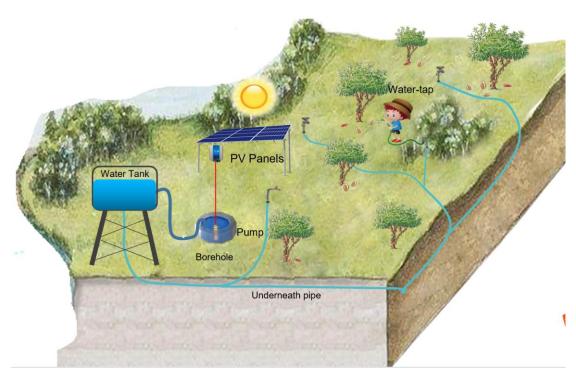
CAUTION: Adjust partial control parameters according to the steps indicated by the manual before the first operation. Do not change the control parameters of the drive by random, or it might damage the equipment.

CAUTION: The heat sink gets hot during operation. Do not touch it until it has cooled down again, or you might get burned.

CAUTION: At altitudes of more than 1,000 m above sea level, the drive should be derated for use. Output current should be derated by 10% for every 1,500 m increment of altitude.

CAUTION: Never run the pump when it is not fully submerged in water. When the pump is installed the correct running direction can be determined by measuring the flow rates.

#### Chapter 2. Solar pumping system introduction


**Solar pumping systems** can be applied to all forms of daily use, water pumping for drinking water supply for remote villages and farms without connection to the water grid, for agricultural use such as livestock watering, agricultural irrigation, forestry irrigation, pond management, desert control, and industrial use such as waste water treatment etc.

The system is composed of a PV arrays, a pump and a solar pump inverter. Based on the design philosophy that it is more efficient to store water rather than electricity, there is no energy storing device such as storage battery in the system. The system is prepared to be combined with a elevated water storage, e.g. water tower or an uphill tank installation.

The PV generator, an aggregation of PV modules connected in series and in parallel, absorbs solar irradiation and converts it into electrical energy, providing power for the whole system. The pump drive controls and adjusts the system operation and converts the DC produced by the PV module into AC to drive the pump, and adjusts the output frequency in real-time according to the variation of sunlight intensity to realize the maximum power point tracking (MPPT).

According to the actual system demand and installation condition, different types of pumps such as centrifugal pump, axial flow pump, mixed flow pump or deep well pump can be used.

Solar pump system: It includes solar panels arrays +solar pump inverter +AC pumps.



System constitute diagram

#### Chapter 3. Solar pump inverter introduction

The MPPT solar pump inverter is a low voltage AC drive from 0.4kw to 220KW above rating designed to operate with energy drawn from solar panel or photovoltaic cells (PV).

The inverter is customized to operate in dual supply mode, so the grid connected supply is used in the absence of energy from PV cells. This drive functions with the latest in technology maximum power point tracking (MPPT) algorithm to derive maximum power from the PV cells at any instant.

#### Solar Pump Inverter Features

- ✓ Maximum power point tracking (MPPT) with fast response speed and stable operation efficiency> 99%
- ✓ Suits for most 3 phase AC pumps and AC PMSM high efficiency pumps
- ✓ The working voltage of solar panel can set by manual or MPPT automatically tracking
- ✓ Compatible with dual power input, AC grid and DC power supply input
- ✓ Built in automatic sleep-wake up function,
- ✓ Dry run (under load ) protection
- ✓ Motor maximum current protection
- ✓ Low input power protection
- ✓ Lowest stop frequency protection
- ✓ The PQ (power/flow) performance curve enables calculating the flow output from the pump
- ✓ Digital control for fully automatic operation, data storage and protective functions
- ✓ Intelligent power module (IPM) for the main circuit
- ✓ LED display operating panel and support remote control
- ✓ Low water probe sensor, and water level control function
- ✓ Strong lightning protection
- ✓ Ambient temperature for using: -10 to +50°C.
- ✓ Clock relay card for timing stop and stop control
- ✓ LCD keypad as optional
- ✓ Input VOC auto-detect function

# 3.1 MPPT solar pump inverter

#### Solar pump inverter voltage range

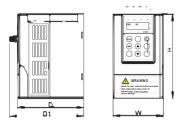
| Model   | Applicable for   | Input DC    | Over voltage | Under voltage | Suggest | Suggest |
|---------|------------------|-------------|--------------|---------------|---------|---------|
| iviodei | pumps            | voltage     | point        | point         | Vmp     | Voc     |
| 220V    | For 220V AC      | 150V – 450V | 450V         | 100V          | 310VDC  | 380VDC  |
| 380V    | For 380V/480V AC | 350V-900V   | 800V/900V    | 200V          | 520VDC  | 650VDC  |

### 3.2 Power and specification

|    |                                                                     |                   | T                 | 1                | 1                 |            | 1      |  |  |  |
|----|---------------------------------------------------------------------|-------------------|-------------------|------------------|-------------------|------------|--------|--|--|--|
| SN | Power                                                               | Rate current      | Output voltage    | ' '              | External of drive |            | Weight |  |  |  |
|    |                                                                     |                   | ( 3PH AC)         | pumps            | size(mm)H*W*D     | (VDC)      | (kg)   |  |  |  |
|    | 220v -mini series: Input 150-450V DC or 200 to 240V AC, VOC 350V DC |                   |                   |                  |                   |            |        |  |  |  |
| 1  | 1.5kw-M                                                             | 7A                | 0-256VAC          | 1.5KW            | 151*100*127       | 260 to 375 | 1.4    |  |  |  |
| 2  | 2.2kw-M                                                             | 10A               | 0-256VAC          | 2.2KW            | 151*100*127       | 260 to 375 | 1.4    |  |  |  |
|    | 380v-mi                                                             | ni series: Input  | 350 to 800V/900\  | / DC or 380 to 4 | 180V AC, VOC 620  | V DC       |        |  |  |  |
| 1  | 1.5kw-M                                                             | 3.7A              | 0-480VAC          | 1.5KW            | 151*100*127       | 486 to 750 | 1.4    |  |  |  |
| 2  | 2.2kw-M                                                             | 5A                | 0-480VAC          | 2.2KW            | 151*100*127       | 486 to 750 | 1.4    |  |  |  |
|    | 220v st                                                             | andard series : I | Input 150 to 450V | DC or 200 to 24  | 40V AC, VOC 350   | VDC        |        |  |  |  |
| 1  | 1.5kw                                                               | 7A                | 0-256VAC          | 1.5KW            | 185*118*153.8     | 260 to 375 | 2      |  |  |  |
| 2  | 2.2kw                                                               | 10A               | 0-256VAC          | 2.2KW            | 185*118*153.8     | 260 to 375 | 2.5    |  |  |  |
| 3  | 4kw                                                                 | 16A               | 0-256VAC          | 4.0KW            | 247*160*175       | 260 to 375 | 4.3    |  |  |  |
|    | 380v stano                                                          | lard series : Inp | ut 350 to 800V/90 | 00V DC or 380 to | o 480V AC, VOC 6  | 20V DC     |        |  |  |  |
| 1  | 2.2kw                                                               | 5A                | 0-480VAC          | 2.2KW            | 185*118*153.8     | 486 to 750 | 3      |  |  |  |
| 2  | 4kw                                                                 | 10A               | 0-480VAC          | 4KW              | 185*118*153.8     | 486 to 750 | 3      |  |  |  |
| 3  | 5.5kw                                                               | 13A               | 0-480VAC          | 5.5KW            | 247*160*175       | 486 to 750 | 4.2    |  |  |  |
| 4  | 7.5KW                                                               | 17A               | 0-480VAC          | 7.5KW            | 247*160*175       | 486 to 750 | 4.3    |  |  |  |
| 5  | 11KW                                                                | 25A               | 0-480VAC          | 11KW             | 247*160*175       | 486 to 750 | 4.5    |  |  |  |
| 6  | 15KW                                                                | 30A               | 0-480VAC          | 15KW             | 320*220*197.3     | 486 to 750 | 7.3    |  |  |  |
| 7  | 18KW                                                                | 37A               | 0-480VAC          | 18KW             | 320*220*197.3     | 486 to 750 | 7.5    |  |  |  |
| 8  | 22KW                                                                | 45A               | 0-480VAC          | 22KW             | 415*230*205       | 486 to 750 | 12     |  |  |  |
| 9  | 30KW                                                                | 60A               | 0-480VAC          | 30KW             | 480*260*215       | 486 to 750 | 17     |  |  |  |
| 10 | 37KW                                                                | 75A               | 0-480VAC          | 37KW             | 480*260*215       | 486 to 750 | 17.5   |  |  |  |
| 11 | 45KW                                                                | 91A               | 0-480VAC          | 45KW             | 575*320*310       | 486 to 750 | 35     |  |  |  |
| 12 | 55KW                                                                | 110A              | 0-480VAC          | 55KW             | 575*320*310       | 486 to 750 | 36     |  |  |  |
| 13 | 75KW                                                                | 150A              | 0-480VAC          | 75KW             | 620*380*310       | 486 to 750 | 45     |  |  |  |
| 14 | 90KW                                                                | 180A              | 0-480VAC          | 93KW             | 620*380*310       | 486 to 750 | 51     |  |  |  |
| 15 | 110KW                                                               | 220A              | 0-480VAC          | 110KW            | 620*380*310       | 486 to 750 | 54     |  |  |  |
| 16 | 132kw                                                               | 250A              | 0-480VAC          | 132KW            | 620*380*310       | 486 to 750 | 55     |  |  |  |

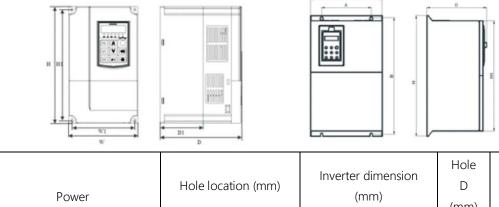
MPPT solar pump inverter operation manual (V11)

| 17 | 160kw     | 310A              | 0-480VAC         | 160KW            | 817*500*348      | 486 to 750 | 94  |
|----|-----------|-------------------|------------------|------------------|------------------|------------|-----|
| 18 | 185kw     | 340A              | 0-480VAC         | 185KW            | 817*500*348      | 486 to 750 | 96  |
| 19 | 200kw     | 380A              | 0-480VAC         | 200KW            | 817*500*348      | 486 to 750 | 98  |
| 20 | 220kw     | 415A              | 0-480VAC         | 220KW            | 817*500*348      | 486 to 750 | 98  |
|    | 22        | 20v-L series: Inp | ut 150-450V DC c | or 200 to 240V A | C, VOC 350V DC   |            |     |
| 1  | 1.5kw     | 7A                | 0-256VAC         | 1.5KW            | 298*165*201      | 260 to 375 | 3   |
| 2  | 2.2kw     | 10A               | 0-256VAC         | 2.2KW            | 298*165*201      | 260 to 375 | 3   |
| 3  | 4kw       | 16A               | 0-256VAC         | 4.0KW            | 310*205*225      | 260 to 375 | 4.5 |
|    | 380v-L    | series : Input 3! | 50 to 800V/900V  | DC or 380 to 48  | 80V AC, VOC 620V | DC         |     |
| 1  | 2.2kw     | 5A                | 0-480VAC         | 2.2KW            | 298*165*201      | 486 to 750 | 3   |
| 2  | 4kw       | 10A               | 0-480VAC         | 4KW              | 298*165*201      | 486 to 750 | 3   |
| 3  | 5.5kw     | 13A               | 0-480VAC         | 5.5KW            | 310*205*225      | 486 to 750 | 4.5 |
| 4  | 7.5KW     | 17A               | 0-480VAC         | 7.5KW            | 310*205*225      | 486 to 750 | 4.5 |
|    | 220v      | -S IP54 series: I | nput 150-450V D  | C or 200 to 240\ | AC, VOC 350V D   | C          |     |
| 1  | 1.5kw     | 7A                | 0-256VAC         | 1.5KW            | 245**160*180     | 260 to 375 | 5   |
| 2  | 2.2kw     | 10A               | 0-256VAC         | 2.2KW            | 245**160*180     | 260 to 375 | 5   |
| 3  | 4kw       | 16A               | 0-256VAC         | 4.0KW            | 320*215*190      | 260 to 375 | 7.5 |
|    | 380v-S IP | 54 series : Input | 350 to 800V/900  | OV DC or 380 to  | 480V AC, VOC 62  | 0V DC      |     |
| 1  | 2.2kw     | 5A                | 0-480VAC         | 2.2KW            | 245**160*180     | 486 to 750 | 5   |
| 2  | 4kw       | 10A               | 0-480VAC         | 4KW              | 245**160*180     | 486 to 750 | 5   |
| 3  | 5.5kw     | 13A               | 0-480VAC         | 5.5KW            | 320*215*190      | 486 to 750 | 7.5 |
| 4  | 7.5KW     | 17A               | 0-480VAC         | 7.5KW            | 320*215*190      | 486 to 750 | 7.5 |
| 5  | 11KW      | 25A               | 0-480VAC         | 11KW             | 320*215*190      | 486 to 750 | 7.5 |
| 6  | 15KW      | 30A               | 0-480VAC         | 15KW             | 410*275*200      | 486 to 750 | 13  |
| 7  | 18KW      | 37A               | 0-480VAC         | 18KW             | 410*275*200      | 486 to 750 | 13  |
| 8  | 22KW      | 45A               | 0-480VAC         | 22KW             | 410*275*200      | 486 to 750 | 13  |


# 3.3 Technical specification

| Solar pump inverter mode only when PE-00=1&2 |                                                                           |  |  |  |  |  |
|----------------------------------------------|---------------------------------------------------------------------------|--|--|--|--|--|
| Recommended MPPT                             | Vmp 131 to 350 VDC for 1S model (80V to 450VDC input,110/220VAC output)   |  |  |  |  |  |
| voltage range                                | Vmp 260 to 355VDC for 2S model ( 250V to 450VDC input,0-240VAC output)    |  |  |  |  |  |
|                                              | Vmp 486 to 650 VDC for 4T model ( 350V to 800VDC input, 0- 480VAC output) |  |  |  |  |  |
| Recommended input Voc                        | Voc 180(VDC), Vmpp 155(VDC) for 1S model or 110V AC pumps                 |  |  |  |  |  |
| and Vmpp voltage                             | Voc 380(VDC), Vmpp 310(VDC) for 2S model or 220V AC pumps                 |  |  |  |  |  |
|                                              | Voc 650(VDC), Vmpp 520(VDC) for 4T model or 380V AC pumps                 |  |  |  |  |  |
| Motor type                                   | Adapt for permanent magnet synchronous motor(PMSM) and asynchronous motor |  |  |  |  |  |
|                                              | pumps, submersible and surface pumps etc                                  |  |  |  |  |  |
| Rated output voltage                         | Output under rated condition: 3 phase, 0 ~ input voltage, inaccuracy<5%   |  |  |  |  |  |

| Output frequency           | 0~maximum frequency 600Hz                                                                                                                                                                           |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MPPT efficiency            | 99.7%                                                                                                                                                                                               |
| Overload capacity          | 150% rated current for 60S, 180% rated current for 2S                                                                                                                                               |
| Solar pump control special | MPPT and CVT (constant voltage tracking), time control function,sand clean function,                                                                                                                |
| performance                | dry run protection, low frequency stop protection, minimum power input, motor                                                                                                                       |
|                            | maximum current protection, flow calculating, energy generated calculating and water tank level detected                                                                                            |
|                            | Phase loss protection, phase short circuit protection, ground to phase circuit                                                                                                                      |
| Protection function        | protection, input and output short circuit protection. Stall protection, lightning protection                                                                                                       |
| Protection degree          | IP20 for- Mini/L/standard series,IP54 for -S series .All Air force cooling                                                                                                                          |
| Running mode               | MPPT or CVT                                                                                                                                                                                         |
| Enhanced version of        | Design based on vector control AC drive, more specification please refer to PH100                                                                                                                   |
| AC drive                   | vector control drive operation manual                                                                                                                                                               |
| Certification              | CE and IEC: (EN 61000-3-11:2000 EN 61000-3-12:2011)                                                                                                                                                 |
|                            | EN 62109-1/IEC 62109-1:2010 EN 61800-5-1:2007+A1:2017                                                                                                                                               |
|                            | EN IEC61800-3:2008(C3)/IEC 61800-3:2007(C2)                                                                                                                                                         |
| Storage temperature        | -30 ~ +60°C                                                                                                                                                                                         |
| Temperature humidity       | -10 ~ + 50 °C, derating above 40 °C, maximum temperature 60 °C (no-load operation)5% to 95% RH (non-condensing)                                                                                     |
| Install place              | altitude ≤ 1000m,above 1000m down the rated amount, each increase of 100m down the rated mount of 1%;no condensation, ice ,rain, snow, hail; solar radiation below 700W/m², air pressure 70-106 KPa |
|                            | PID control, speed track, power off restart, jump frequency, upper/lower frequency                                                                                                                  |
| Standard functions         | limit control, program operation, multi- speed, RS485, analog output, frequency                                                                                                                     |
|                            | impulse output                                                                                                                                                                                      |


### 3.4 Dimensions

# 3.4.1 Mini model



| Power     | Н   | H1  | W   | W1 | D   | D1  | Hole |
|-----------|-----|-----|-----|----|-----|-----|------|
| 1.5-2.2KW | 151 | 142 | 100 | 88 | 127 | 130 | 4.5  |

# 3.4.2 Standard model



| Power  | Hole location (mm) |          |           | Inverter dimension<br>(mm) |       |       | D (mm) | N.W  |         |       |     |     |     |     |   |     |     |       |     |     |
|--------|--------------------|----------|-----------|----------------------------|-------|-------|--------|------|---------|-------|-----|-----|-----|-----|---|-----|-----|-------|-----|-----|
|        | W1                 | H1       |           | Н                          | W     | D     |        | (kg) |         |       |     |     |     |     |   |     |     |       |     |     |
|        | Single p           | hase 220 | V input   | , 50/601                   | Hz    |       |        |      |         |       |     |     |     |     |   |     |     |       |     |     |
| 0.75kw |                    |          |           |                            |       |       |        |      |         |       |     |     |     |     |   |     |     |       |     |     |
| 1.5kw  | 106.5              | 175      | /         | 185                        | 118   | 153.8 | 4.5    | 2.1  |         |       |     |     |     |     |   |     |     |       |     |     |
| 2.2kw  |                    |          |           |                            |       |       |        |      |         |       |     |     |     |     |   |     |     |       |     |     |
| 4kw    | 148                | 235.5    | /         | 247                        | 160   | 175   | 5.5    | 4    |         |       |     |     |     |     |   |     |     |       |     |     |
|        | 3 pha              | se 380V  | input , 5 | 0/60Hz                     |       |       |        |      |         |       |     |     |     |     |   |     |     |       |     |     |
| 0.75kw |                    |          |           |                            |       |       |        |      |         |       |     |     |     |     |   |     |     |       |     |     |
| 1.5kw  | 10C F              | 100 5    | 106 F     | 106 E                      | 106.5 | 175   | ,      | 10.5 | 185 118 | 153.8 | 4.5 | 2.1 |     |     |   |     |     |       |     |     |
| 2.2kw  | 100.5              | 1/3      | 1/5       | 1/5                        | 1/5   | 1/5   | 1/5    | 175  | 1/5     | 1/5   | 1/5 | 1/5 | 175 | 1/5 | / | 103 | 110 | 133.0 | 4.5 | 2.1 |
| 4kw    |                    |          |           |                            |       |       |        |      |         |       |     |     |     |     |   |     |     |       |     |     |
| 5.5kw  |                    |          |           |                            |       |       |        |      |         |       |     |     |     |     |   |     |     |       |     |     |
| 7.5KW  | 148                | 235.5    | /         | 247                        | 160   | 175   | 5.5    | 4.5  |         |       |     |     |     |     |   |     |     |       |     |     |
| 11KW   |                    |          |           |                            |       |       |        |      |         |       |     |     |     |     |   |     |     |       |     |     |
| 15KW   |                    |          |           |                            |       |       |        |      |         |       |     |     |     |     |   |     |     |       |     |     |
| 18KW   | 205                | 305      | /         | 320                        | 220   | 197.3 | 6.5    | 7    |         |       |     |     |     |     |   |     |     |       |     |     |
| 22KW   |                    |          |           |                            |       |       |        |      |         |       |     |     |     |     |   |     |     |       |     |     |

MPPT solar pump inverter operation manual (V11)

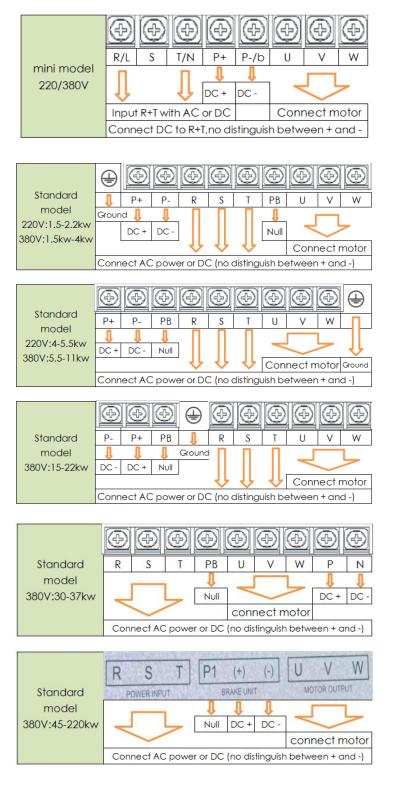
| 30kw  | 200 | 465 | / | 480 | 260 | 215 | 8           | 17 |
|-------|-----|-----|---|-----|-----|-----|-------------|----|
| 37kw  | 200 | 103 | , | 100 | 200 | 213 | Ü           | 17 |
| 45kw  | 180 | 550 | / | 575 | 320 | 310 | 8           | 36 |
| 55kw  | 100 | 330 | , | 313 | 54  | 510 | O           | 30 |
| 75kw  |     |     |   |     |     |     |             |    |
| 90kw  | 240 | 595 | / | 620 | 380 | 310 | 10          | 51 |
| 110kw |     |     |   |     |     |     |             |    |
| 132kw |     |     |   |     |     |     |             |    |
| 160kw |     |     |   |     |     |     |             |    |
| 185kw | 200 | 000 | , | 825 | F00 | 250 | <b>⊥</b> 11 | 00 |
| 200kw | 380 | 800 | / | 025 | 500 | 350 | ф11         | 96 |
| 220kw |     |     |   |     |     |     |             |    |

# 3.4.3 IP54 series

| IP54 series              |     |     |     |     | -   |     |                      |
|--------------------------|-----|-----|-----|-----|-----|-----|----------------------|
| Power                    | W   | Н   | D   | H2  | W1  | H1  | INSTALLATION<br>Hole |
| 220v-1.5kw<br>220v-2.2kw | 160 | 245 | 180 | 224 | 120 | 229 | ф6                   |
| 220v-4kw                 | 215 | 320 | 190 | 224 | 120 | 229 | ф6                   |
| 380v-2.2kw               |     |     |     |     |     |     | -                    |
| 380v-4kw                 | 160 | 245 | 180 | 224 | 120 | 229 | ф6                   |
| 380v-5.5kw               |     |     |     |     |     |     |                      |
| 380v-7.5kw               | 215 | 320 | 190 | 296 | 160 | 302 | ф8                   |
| 380v-11kw                |     |     |     |     |     |     |                      |
| 380v-15kw                |     |     |     |     |     |     |                      |
| 380v-18kw                | 275 | 410 | 200 | 384 | 200 | 392 | ф8                   |
| 380v-22kw                |     |     |     |     |     |     |                      |

# Chapter4. Operation keypad description




| Key symbol    | Name                  | Function description                                                                                |
|---------------|-----------------------|-----------------------------------------------------------------------------------------------------|
| PRG           | Menu key              | Enter menu                                                                                          |
| ENTER<br>SET  | Confirm key           | Enter into menu or confirm the setting value                                                        |
| 5             | UP increase key       | Data and function code increase                                                                     |
|               | Down decrease key     | Data and function code reduce                                                                       |
| SHIFT         | SHIFT key             | In the monitor status, press this key can select: output frequency/voltage/current,DC bus voltage   |
| RUN           | Running key           | Use to run motor in keyboard control mode                                                           |
| M.F.K<br>JOG  | Multiple function key | The function of MF.K can be set P7.01 setting.  Default setting is no function to program           |
| STOP<br>RESET | Stop and reset        | In running status, this key can use to stop motor running (P0-02). Reset malfunction in alarm mode. |
| SPI           | Solar Pump Inverter   | No function for program                                                                             |

| Symbol | When Indicator light on                                          |
|--------|------------------------------------------------------------------|
| Hz     | Output running frequency                                         |
| А      | Output running current                                           |
| V      | First show input DC bus voltage then show output running voltage |
| RUN    | Running mode                                                     |
| DIR    | Inverter runs in keypad control mode with P0-02=0 setting        |
| LOCAL  | Inverter runs in terminal control mode, with P0-02=1 setting     |
| TRIP   | Fault indicator, inverter will be trip when any alarm happens    |

#### Chapter 5. Terminals and wiring and operation

#### 5.1 Terminals

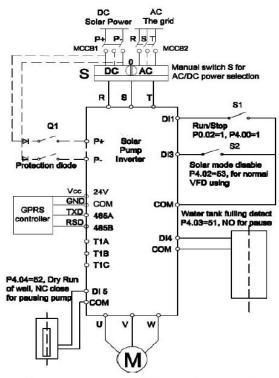
#### 5.1.1 Power terminals



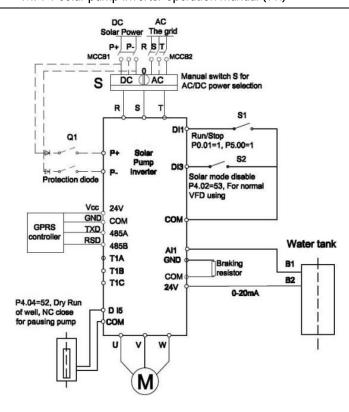
Noted: 1:Connect DC + and - to R-S-T,connect any 2 wire of it and no distinguish the direction 2: PB and P/P+ connect for braking resistor,P1 and P/P+ connect for DC reactor

#### 5.1.2 Control circuit terminals and explanation

| 48 | 5A +1 | OV A | \l11 | AI2  | DI  | 1 D | 12  | DI3  | DI | 4  | DI | 5  |   | T1/ <i>F</i> | \ T1 | /B T | 1/C   |   |
|----|-------|------|------|------|-----|-----|-----|------|----|----|----|----|---|--------------|------|------|-------|---|
|    | 485B  | GND  | AO.  | 1 Ai | 3 ( | GND | 24\ | / CC | M  | DC | )1 | FM | ] | T            | 2/A  | T2/E | 3 T2/ | С |


| Туре                | Symbol                  | Name of terminals                                              | Specification and explanation                                                                                     |
|---------------------|-------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Citi                | 485A                    | 485+                                                           | RS485 communication port , compatible with                                                                        |
| Communication       | 485B                    | 485-                                                           | Modbus                                                                                                            |
|                     | DI1 ~ DI4               | Digital input                                                  | Sink or source input option set by jumper, input resistance is 2.5K,optocoupler isolation input, jumper J9        |
| Digital input       | DI5                     | Digital input or high<br>speed pulse trains input<br>terminals | General digital input terminal characteristics Pulse trains input maximum frequency: 100KHz                       |
| and output          | DO1                     | Digital output 1                                               | Open collector output<br>Maximum drive capability is 50mA                                                         |
|                     | FM                      | Digital output 2                                               | Open collector output, maximum drive capability is 50mA,<br>Can be selected as a pulse train output, up to 100KHz |
|                     | Al1                     | Analog input 1                                                 | Input voltage range: 0V ~ 10V<br>Input resistance: 22K                                                            |
| Analog input and    | Al2                     | Analog input 2                                                 | Input voltage range: 0 ~ 10V or 4 ~ 20mA<br>Input resistance: 22K, jumper J8                                      |
| output              | AO1                     | Analog output 1                                                | Output range: 0 ~ 10V or 0 ~ 20mA,select by jumper J5                                                             |
|                     | AO2                     | Analog output 2                                                | Output range: 0 ~ 10V or 0 ~ 20mA,select by jumperJ5                                                              |
|                     | 10V                     | Analog power supply                                            | Output current: 20mA; Accuracy: 2%                                                                                |
| power supply        | GND                     | Analog Ground                                                  | Analog reference ground                                                                                           |
| Reference ground    | 24V                     | User power supply                                              | Accuracy : ±15%                                                                                                   |
|                     | СОМ                     | Digital ground                                                 | Digital reference ground                                                                                          |
| Status relay output | T1/A ,<br>T1/B,<br>T1/C | Relay 1                                                        | TA/TB normal close、TA/TC normal open; Driving capability: 25VAc, 3A, COSØ=0.4; 30Vdc, 1A                          |
|                     | T2/A ,                  | Relay 2                                                        | TA/TB normal close、TA/TC normal open;                                                                             |

MPPT solar pump inverter operation manual (V11)

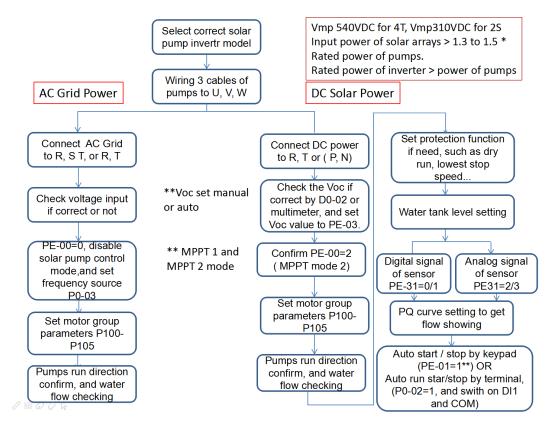

| T2/B, | Driving capability: 25VAc , 3A , COSØ=0.4 ; |
|-------|---------------------------------------------|
| T2/C  | 30Vdc , 1A                                  |

Noted: for mini model and use X to replace D,like X1=D1,X2=D2 etc

### 5.2 Wiring diagram



solar pump wiring 1, digital switch for water tank fulling




Wiring 2 for water tank fulling for analog type water sensor

Note: Wiring explanation for water and dry run sensor:

- (1) Connect 2 wires of **float ball sensor** to DI4 and COM for water tank level fulling detecting, and set P4-03=51( float ball NO relay alarm). When water level reached to sensor detecting, the normal open (NO) relay point will be activated, invereter will stop pumping, and sent a A.FuL alarm.
- (2) Connect 2 wires of sensor of **dry run sensor** of well to DI5 and GND, and set P4-04=52 ( dry run NC relay alarm). It will sent alarm A.LLd and stop pumping when lack of water in well for dry run protection.
- (3) It is also enable to connect analog (0-10VDC, or 0/4-20mA) water level sensor for water tank leveling detecting:
- (4) Connecting 2 wires of 0/4-20mA analog sensor to Al1 and 24VDC terminals of inverter, and short connect COM and GND terminals for constructing a loop circuit.

#### 5.3 Operation instructions and notes



MPPT solar pump inverter operation flow chat

#### Notes:

- A. The total power of solar arrays input should be large than 1.3 to 1.5 times of rated of pumps.and the rated power of inverter must be large than rated power of pumps.
- B. Set P1-00 to P1-05 motor group parameters for getting better pumps protection
- C. Set dry run function with PE-22 to PE-24 parameters for pumps protection if not enough water in well.
- D. Set lowest stop frequency function for pumps not allow to run in low speed protection with PE-19 to PE-21.
- E. Set pumps over current protection with PE-25 and PE-26.
- F. Set Min power input function to avoid solar pump system working in low power input. (PE-28 to PE-30).
- G. Compatible with both digital and analog signal of transmitter for water tank full detection. ( PE-31 to PE-35).
- H. User can get flow, day flow, generating energy and day generating energy information from inverter with PQ curve setting( PE-38 to PE-39), and get monitor form U0-13 to U0-19.
- It must to perform motor auto tuning for PMSM high speed and high efficiency pumps. Regarding for driving PMSM, the motor auto tuning is very important. The user can check parameters of P1-20, after auto tuning if has been modification, if these parameters is not correct for pumps, please modify it according to pumps specification.

### Chapter 6. Simple parameter list

Table Symbol Description:

- " $\sqrt{}$ " indicates that the parameter can be changed in the process of stopping and running.
- "X" indicates that the parameter can be changed in stop mode, can not be changed during running;
- "●" Indicates that the initial parameters related to the drives model.

Below list all parameters for AC drives, not only for solar pump control but also for motor speed and torque control. Blue and bold words stands for parameters which may relative to solar pump control function.

<sup>&</sup>quot;\*" Factory setting, it is not allow to set by user.

| Function code | Name                         | Setting range                                                                                                                                                                                                                                                                                                                                                            | Factory setting | Modific ation |
|---------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------|
|               |                              | P0 Basic function parameters                                                                                                                                                                                                                                                                                                                                             |                 |               |
| P0-00         | G/P model display            | 1: G type ( Heavy duty ) 2: P type ( pumps, fans load duty )                                                                                                                                                                                                                                                                                                             | Per<br>model    | •             |
| P0-01         | The first motor control mode | 0:VF control 1:Sensorless vector control without PG card feedback 2: Sensor vector control with PG card feedback 3: 2 wires output for 1 phase pump 4: 3 wires output for 1 phase pump (if remove starting capacitor and running capacitor, please select 4. If only remove starting capacitor or difficult to remove starting and running capacitors. Please select 3). | 0               | X             |
| P0-02         | Command mode                 | 0: Keypad ( LED OFF) 1:Terminal command ( LED ON) 2: RS485 communication (LED flash)                                                                                                                                                                                                                                                                                     | 0               | √             |
| P0-08         | Preset frequency             | 0.00Hz ~ Maximum ( P0-10 )                                                                                                                                                                                                                                                                                                                                               | 50.00Hz         | √             |
| P0-09         | Running direction            | 0: the same direction 1: the opposite direction                                                                                                                                                                                                                                                                                                                          | 0               | √             |
| P0-10         | Maximum frequency            | 50.00Hz ~ 600.00Hz                                                                                                                                                                                                                                                                                                                                                       | 50.00Hz         | Χ             |
| P0-11         | Upper limit frequency source | 0: P0-12 1: Al1 2: Al2 3: Potentiometer of keypad 4: PULSE trains 5: Rs485 communication                                                                                                                                                                                                                                                                                 | 3               | X             |
| P0-12         | Upper limit frequency source | Lower limit frequency P0-14 ~ Maximum frequency P0-10                                                                                                                                                                                                                                                                                                                    | 50.00Hz         | √             |

|       |                                                                     | 1                                                                                                          |              |          |
|-------|---------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------|----------|
| P0-13 | Upper limit frequency offset                                        | 0.00Hz ~ Maximum frequency P0-10                                                                           | 0.00Hz       | √        |
| P0-14 | Lower limit frequency                                               | 0.00Hz ~ Maximum frequency P0-12                                                                           | 0.00Hz       | √        |
| P0-15 | Carrier frequency                                                   | 0.5kHz ~ 16.0kHz                                                                                           | Per<br>model | √        |
| P0-16 | Carrier frequency auto adjusting with temperature                   | 0: Not<br>1: Yes                                                                                           | 1            | <b>V</b> |
| P0-17 | Acceleration time 1                                                 | 0.00s ~ 650.00s(P0-19=2)<br>0.0s ~ 6500.0s(P0-19=1)<br>0s ~ 65000s(P0-19=0)                                | Per<br>model | √        |
| P0-18 | Deceleration time 1                                                 | 0.00s ~ 650.00s(P0-19=2)<br>0.0s ~ 6500.0s(P0-19=1)<br>0s ~ 65000s(P0-19=0)                                | Per<br>model | √        |
| P0-19 | Unit of acceleration /deceleration time                             | 0 : 1s<br>1 : 0.1s<br>2 : 0.01s                                                                            | 1            | X        |
| P0-20 | The balance factory for 1 phase pump driving ( 3 phase output)      | 0.00 ~ 2.00                                                                                                | 1.0          | X        |
| P0-21 | The offset of auxiliary frequency source when perform superposition | 0.00Hz ~ Maximum frequency F0-10                                                                           | 0.00Hz       | √        |
| P0-22 | Frequency resolution                                                | 1 : 0.1Hz<br>2 : 0.01Hz                                                                                    | 2            | Χ        |
| P0-24 | Motor parameter group                                               | 0 : Motor parameters group 1<br>1 : Motor parameters group 2                                               | 0            | Χ        |
| P0-26 | UP/DOWN of reference                                                | 0: Running frequency 1: Set frequency                                                                      | 0            | Х        |
|       |                                                                     | P1 Motor parameter setting                                                                                 |              |          |
| P1-00 | Motor type                                                          | 0:General asynchronous motor 1:Variable frequency asynchronous motor 2. Permanent magnet synchronous motor | 0            | X        |
| P1-01 | Rated power of motor                                                | 0.1KW ~ 1000.0KW                                                                                           | Per<br>model | Х        |
| P1-02 | Rated voltage of motor                                              | 1V ~ 2000V                                                                                                 | Per<br>model | Х        |
| P1-03 | Rated current of motor                                              | Inverter power <= 55KW : 0.01A ~ 655.35A<br>Inverter power > 55KW : 0.1A ~ 6553.5A                         | Per<br>model | X        |
| P1-04 | Rated frequency of motor                                            | 0.01Hz ~ Maximum frequency                                                                                 | Per          | Х        |

|       |                                             |                                                                                                                                                                          | model          |   |
|-------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---|
| P1-05 | Rated speed of motor                        | 1rpm ~ 65535rpm                                                                                                                                                          | Per<br>model   | X |
| P1-06 | Asyn. Motor Stator resistance               | Inverter power <= $55KW$ : $0.001\Omega \sim 65.535\Omega$<br>Inverter power > $55KW$ : $0.0001\Omega \sim 6.5535\Omega$                                                 | Auto<br>tuning | Χ |
| P1-07 | Asyn. motor rotor resistance                | Inverter power $<= 55 \text{KW} : 0.001 \Omega \sim 65.535 \Omega$<br>Inverter power $> 55 \text{KW} : 0.0001 \Omega \sim 6.5535 \Omega$                                 | Auto<br>tuning | Χ |
| P1-08 | Asyn. motor leakage inductance              | Inverter power <= 55KW : 0.01mH ~ 655.35mH<br>Inverter power > 55KW : 0.001mH ~ 65.535mH                                                                                 | Auto<br>tuning | Χ |
| P1-09 | Asyn. motor mutual inductance               | Inverter power <= 55KW : 0.1mH ~ 6553.5mH<br>Inverter power > 55KW : 0.01mH ~ 655.35mH                                                                                   | Auto<br>tuning | Χ |
| P1-10 | Asyn. motor no-load current                 | Inverter power <= 55KW: 0.01A ~ F1-03<br>Inverter power > 55KW: 0.1A ~ F1-03                                                                                             | Auto<br>tuning | Χ |
| P1-16 | Synchronous motor stator resistance         | Inverter power <= $55KW$ : $0.001\Omega \sim 65.535\Omega$<br>Inverter power > $55KW$ : $0.0001\Omega \sim 6.5535\Omega$                                                 | Auto<br>tuning | X |
| P1-17 | Synchronous motor D-axis inductance         | Inverter power <= 55KW0.01mH ~ 655.35mH<br>Inverter power > 55KW : 0.001mH ~ 65.535mH                                                                                    | Auto<br>tuning | X |
| P1-18 | Synchronous motor Q axis inductance         | Inverter power <= 55KW : 0.01mH ~ 655.35mH<br>Inverter power > 55KW : 0.001mH ~ 65.535mH                                                                                 | Auto<br>tuning | X |
| P1-20 | Synchronous motor back electromotive force  | 0.1V ~ 6553.5V                                                                                                                                                           | Auto<br>tuning | X |
| P1-34 | Number of pole pairs of rotary transformers | 1~65535                                                                                                                                                                  | 1              | Χ |
| P1-37 | Auto tuning mode selection                  | 0: no operation 1: Asynchronous motor still tunes 2: Asynchronous motor complete tuning 11: Synchronous motor tuning with load 12: Synchronous motor with no-load tuning | 0              | X |
|       |                                             | P4 group Input terminals                                                                                                                                                 |                |   |
| P4-00 | DI1 terminals function selection            | 0 : no operation 1: Forward running or running command                                                                                                                   | 1              | Χ |
| P4-01 | DI2 terminals function selection            | 2: Reverse running REV or forward/reverse running direction selection                                                                                                    | 4              | X |
| P4-02 | DI3 terminals function selection            | (note: when set for 1 or 2 parameter, please reference to P4-11 function introduction) 3: 3 line control mode                                                            | 9              | Χ |
| P4-03 | DI4 terminals function selection            | 4: Forward Jog ( FJOG ) 5: Reverse Jog ( RJOG )                                                                                                                          | 12             | Х |
| P4-04 | DI5 terminals function selection            | 6: Terminal UP                                                                                                                                                           | 13             | X |

| P4-05 | Reserve                    | 7: Terminal DOWN                                                                      | 0         | Χ                                     |
|-------|----------------------------|---------------------------------------------------------------------------------------|-----------|---------------------------------------|
| P4-06 | Reserve                    | 8: Free stop                                                                          | 0         | Χ                                     |
|       |                            | 9: Fault reset ( RESET )                                                              |           | Χ                                     |
| P4-07 | Reserve                    | 10: Run pause                                                                         | 0         |                                       |
| P4-08 | Reserve                    | 11: External fault normal open input                                                  | 0         | Χ                                     |
| P4-09 | Reserve                    | 16: Acceleration/ deceleration selection                                              | 0         | Χ                                     |
|       |                            | terminals 1                                                                           |           |                                       |
|       |                            | 17: Acceleration/ deceleration selection                                              |           |                                       |
|       |                            | terminals 2                                                                           |           |                                       |
|       |                            | 18: Frequency source switch                                                           |           |                                       |
|       |                            | 19: UP/DOWN setting reset (terminals or                                               |           |                                       |
|       |                            | keypad )                                                                              |           |                                       |
|       |                            | 20: Running command terminals switch                                                  |           |                                       |
|       |                            | 21: Acceleration/deceleration forbidden                                               |           |                                       |
|       |                            | 22: PID pause                                                                         |           |                                       |
|       |                            | 35: Change PID direction                                                              |           |                                       |
|       |                            | 36: External parking terminal 1                                                       |           |                                       |
|       |                            | 37: Control command switchover terminal2                                              |           |                                       |
|       |                            | 38: PID integral pause                                                                |           |                                       |
|       |                            | 41: Motor selection terminals 1                                                       |           |                                       |
|       |                            | 42: Motor selection terminals 2                                                       |           |                                       |
|       |                            | 43: PID parameter switchover                                                          |           |                                       |
|       |                            | 44: User define fault 1                                                               |           |                                       |
|       |                            | 45: User define fault 2                                                               |           |                                       |
|       |                            | 46: Speed control /Torque control switchover                                          |           |                                       |
|       |                            | 47: Emergency stop                                                                    |           |                                       |
|       |                            | 48: External parking terminal 2                                                       |           |                                       |
|       |                            | <ul><li>49: DC braking in deceleration</li><li>50: current running time res</li></ul> |           |                                       |
|       |                            | 51: Water tank full detect 1/ single point detect                                     |           |                                       |
|       |                            | 52: Water tank full detect 1/ single point detect                                     |           |                                       |
|       |                            | 53: MPPT tracking stop/ solar pump control                                            |           |                                       |
|       |                            | disable.                                                                              |           |                                       |
| P4-10 | DI filter time             | 0.000s ~ 1.000s                                                                       | 0 010s    | √                                     |
| P4-11 | Terminals command mode     | 0: Two line control 1                                                                 |           | У                                     |
|       | Terrinais command mode     | 1: Two line control 2                                                                 |           | ^\                                    |
|       |                            | 2: 3 line control 1                                                                   |           |                                       |
|       |                            | 3: 3 line control 2                                                                   |           |                                       |
| P4-12 | Terminals UP/DOWN          | 0.001Hz/s ~ 65.535Hz/s                                                                | 100Hz/s   | √                                     |
| 1714  | Change ratio               | 0.00 11 12/3 03.3331 12/3                                                             | 1.00112/3 | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |
| D4 24 | Sharige ratio              | Hoite/ digit. Al 1 is loss than priming up in a t                                     | 000       | -1                                    |
| P4-34 | Mhan Alinnut is less the   | Units' digit: Al 1 is less than minimum input                                         | 000       | V                                     |
|       | When Al input is less than | Set selection                                                                         |           |                                       |
|       | minimum setting selection  | 0: Corresponds to the minimum input setting                                           |           | 1                                     |

|       | <u> </u>                            | mp inverter operation mandal (v ii)                                                                                                                                                                                                                                                                                                                                                   |        | Τ |
|-------|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---|
|       |                                     | 1:0.0% Ten's digit: A2 is less than minimum input Set selection, as above Hundred's digit: Potentiometer less than Min. Input selection, as above                                                                                                                                                                                                                                     |        |   |
| P4-35 | DI1 Relay time                      | 0.0s ~ 3600.0s                                                                                                                                                                                                                                                                                                                                                                        | 0.0s   | Χ |
| P4-36 | DI2 Relay time                      | 0.0s ~ 3600.0s                                                                                                                                                                                                                                                                                                                                                                        | 0.0s   | Χ |
| P4-37 | DI3 Relay time                      | 0.0s ~ 3600.0s                                                                                                                                                                                                                                                                                                                                                                        | 0.0s   | X |
|       |                                     | P5 Group Output terminals                                                                                                                                                                                                                                                                                                                                                             |        |   |
| P5-00 | FM terminals output mode selection  | 0: High speed pulse output (FMP) 1: Digital output (FMR)                                                                                                                                                                                                                                                                                                                              | 0      | √ |
| P5-01 | FMR output function selection       | 0: No output                                                                                                                                                                                                                                                                                                                                                                          | 0      | √ |
| P5-02 | Relay 1 function selection          | 1: Frequency inverter running                                                                                                                                                                                                                                                                                                                                                         | 2      | √ |
| P5-03 | Relay 2 function selection          | 2: Fault output (Free stop fault )                                                                                                                                                                                                                                                                                                                                                    | 0      | √ |
| P5-04 | DO1 output function selection       | 3: FDT1 Frequency level detect output<br>4:Frequency reach                                                                                                                                                                                                                                                                                                                            | 1      | √ |
| P5-05 | Extension card DO2 Output selection | 5: Zero speed running ( no output when stop) 6: Motor overload pre-alarm 7: Inverter overload pre-alarm 12: Cumulative run time arrives 17: Upper limit frequency arrives 18: Lower limit frequency arrives 19: Under voltage status output 38: Alarm output (all faults) 39: Motor over temperature warning 41: Fault output (for free stop failure and under voltage is not output) | 4      | √ |
| P5-18 | RELAY1 output relay time            | 0.0s ~ 3600.0s                                                                                                                                                                                                                                                                                                                                                                        | 0.0s   | √ |
| P5-19 | RELAY2 output relay time            | 0.0s ~ 3600.0s                                                                                                                                                                                                                                                                                                                                                                        | 0.0s   | √ |
|       |                                     | P6 start and stop control                                                                                                                                                                                                                                                                                                                                                             | ı      |   |
| P6-00 | Starting mode                       | 0: Directly start 1: start after speed tracking 2: Pre-excitation start (AC asynchronous machine)-                                                                                                                                                                                                                                                                                    | 0      | √ |
| P6-01 | Speed tracking mode                 | <ul><li>00: starts from stop frequency</li><li>1: starts at zero speed</li><li>2: Starting from the maximum frequency</li></ul>                                                                                                                                                                                                                                                       | 0      | X |
| P6-02 | The speed of speed tracking         | 1~100                                                                                                                                                                                                                                                                                                                                                                                 | 20     | √ |
| P6-03 | Starting speed                      | 0.00Hz ~ 10.00Hz                                                                                                                                                                                                                                                                                                                                                                      | 0.00Hz | √ |
| P6-04 | Starting speed keeping time         | 0.0s ~ 100.0s                                                                                                                                                                                                                                                                                                                                                                         | 0.0s   | X |

| P6-05 | Start DC braking current / pre-<br>excitation current | 0% ~ 100%                                                                                                                                                                                                                                                                                                                                                   | 0%   | X        |
|-------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|
| P6-06 | Start DC braking time / pre-<br>excitation time       | 0.0s ~ 100.0s                                                                                                                                                                                                                                                                                                                                               | 0.0s | X        |
| P6-07 | Acceleration and deceleration mode                    | 0: Linear acceleration / deceleration 1: S curve acceleration / deceleration A 2: S curve acceleration and deceleration B                                                                                                                                                                                                                                   | 0    | X        |
| P6-10 | Stop mode                                             | 0: Deceleration stop 1: free parking                                                                                                                                                                                                                                                                                                                        | 0    | √        |
|       |                                                       | P7 keyboard and display                                                                                                                                                                                                                                                                                                                                     |      |          |
| P7-01 | MF.K function button option                           | O: MF.K is invalid  1: Switchover between Operation panel command channel and remote command channel (terminal command channel or communication command channel)  2: Forward and reverse switching  3: Forward Jog  4: Reverse Jog                                                                                                                          | 0    | X        |
| P7-02 | STOP/RESET function                                   | O: STOP/RES button enable only in operation panel control mode  1: STOP/RES button enable in any control mode                                                                                                                                                                                                                                               | 1    | <b>√</b> |
| P7-03 | LED display parameters 1 in running mode              | 0000 ~ FFFF Bit00: Running frequency 1(Hz) Bit01: Setting frequency (Hz) Bit02: DC bus voltage (V) Bit03: Output voltage (V) Bit04: Output current (A) Bit05: Output power (KW) Bit06: Output torque (%) Bit07: DI input status Bit08: DO output status Bit09: Al1 voltage (V) Bit10: Al2 voltage (V) Bit11: Voltage of potentiometer(V) Bit15: PID setting | 1F   | √        |
| P7-04 | LED display parameters 2 in running mode              | 0000 ~ FFFF Bit00: PID feedback Bit03: Running frequency 2 ( Hz ) Bit04: Rest running time Bit05: Al1 before correction voltage (V) Bit06: Al2 before correction voltage (V)                                                                                                                                                                                | 0    | √        |

|       | <u> </u>                        |                                             |        |              |
|-------|---------------------------------|---------------------------------------------|--------|--------------|
|       |                                 | Bit07: operation panel potentiometer before |        |              |
|       |                                 | correction voltage (V)                      |        |              |
|       |                                 | Bit08: Line speed                           |        |              |
|       |                                 | Bit09: Current power-on time (Hour)         |        |              |
|       |                                 | Bit10: Current running time (Min)           |        |              |
| P7-05 | LED display in stop mode        | 0000 ~ FFFF                                 | 33     | $\checkmark$ |
|       |                                 | Bit00: Set frequency (Hz)                   |        |              |
|       |                                 | Bit01: Bus voltage (V)                      |        |              |
|       |                                 | Bit02: DI input status                      |        |              |
|       |                                 | Bit03: DO output status                     |        |              |
|       |                                 | Bit10: Load speed                           |        |              |
|       |                                 | Bit11: PID setting                          |        |              |
| P7-06 | Load speed display factor       | 0.0001 ~ 6.5000                             | 1.0000 | $\checkmark$ |
| P7-07 | Heat sink of Inverter IGBT      | 0.0°C ~ 100.0°C                             | -      | •            |
|       | model temperature               |                                             |        |              |
| P7-08 | Heat sink of Inverter Rectifier | 0.0°C ~ 100.0°C                             | -      | •            |
|       | temperature                     |                                             |        |              |
| P7-09 | Cumulative run time             | 0h ~ 65535h                                 | -      | •            |
| P7-11 | Software version No.            | -                                           | -      | •            |
| P7-12 | The number of decimal places    | 0: 0 decimal places                         | 1      | √            |
|       | of load speed Displays          | 1: 1 decimal place                          |        |              |
|       |                                 | 2: 2 decimal places                         |        |              |
|       |                                 | 3: 3 decimal places                         |        |              |
| P7-13 | Accumulated time since power    | 0 ~ 65535 hour                              | -      | •            |
|       | on                              |                                             |        |              |
| P7-14 | Cumulative power                | 0 ~ 65535 KWh                               | -      | •            |
|       | consumption                     |                                             |        |              |
|       | •                               | •                                           |        |              |

|       |                            | P8 Auxiliary function           |       |              |
|-------|----------------------------|---------------------------------|-------|--------------|
| P8-03 | Acceleration time 2        | 0.0s ~ 6500.0s                  | Per   | √            |
|       |                            |                                 | model |              |
| P8-04 | Deceleration time 2        | 0.0s ~ 6500.0s                  | Per   | √            |
|       |                            |                                 | model |              |
| P8-13 | Reverse running enable     | 0: Allow 1: Forbidden           | 0     | √            |
| P8-14 | Running mode when setting  | 0: Run at lower limit frequency | 0     | $\checkmark$ |
|       | frequency is less than the | 1: stop                         |       |              |
|       | lower limit frequency      | 2: Zero speed running           |       |              |
| P8-18 | Start protection selection | 0: Disable                      | 0     | √            |
|       |                            | 1: Enable                       |       |              |

| P8-27 | Terminal control prior                                | 0 : Invalid<br>1: Valid                                                                                                   | 0      | √        |
|-------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------|----------|
| P8-36 | Output current over limit                             | 0.0% ( No detect )<br>0.1% ~ 300.0% ( Rated current )                                                                     | 200.0% | √        |
| P8-37 | Output current over limit detect relay time           | 0.00s ~ 600.00s                                                                                                           | 0.00s  | √        |
| P8-42 | Timing function selection                             | 0: Invalid 1: Valid                                                                                                       | 0      | √        |
| P8-43 | Timing of run time selection                          | 0: Set by P8-44 1: Al1 2: Al2 3: Potentiometer of operation panel The range of analog input corresponds to P8-44          | 0      | V        |
| P8-44 | Timing value setting of running time                  | 0.0Min ~ 6500.0Min                                                                                                        | 0.0Min | <b>√</b> |
| P8-47 | IGBT Module temperature arrives                       | 0°C ~ 100°C                                                                                                               | 75°C   | √        |
| P8-48 | Cooling fan control                                   | 0: Working in running 1: Working after power up 2:Working by temperature(45°C/40°C) 3:Solar Mode, working if Vpn > PE-16) | 3      | √        |
| P8-49 | Wake up frequency                                     | Sleep frequency (P8-51) ~ Maximum ( P0-10)                                                                                | 0.00Hz | √        |
| P8-50 | Wake up delay time                                    | 0.0s ~ 6500.0s                                                                                                            | 0.0s   | √        |
|       | P9                                                    | group Fault and protection                                                                                                |        |          |
| P9-00 | Motor overload protection selection                   | 0: Prohibited<br>1: Allow                                                                                                 | 1      | <b>√</b> |
| P9-01 | Motor overload protection gain                        | 0.20 ~ 10.00                                                                                                              | 1.00   | <b>√</b> |
| P9-02 | Motor overload pre- warning coefficient               | 50% ~ 100%                                                                                                                | 80%    | √        |
| P9-03 | Overvoltage stall gain                                | 0 ~ 100                                                                                                                   | 100    | √        |
| P9-07 | Ground short circuit protection options when power on | 0: Invalid<br>1: Valid                                                                                                    | 1      | √        |
| P9-09 | Number of automatic reset times                       | 0 ~ 20                                                                                                                    | 0      | <b>V</b> |
| P9-10 | DO ( digital output) when fault alarm auto reset      | 0: No action<br>1: Action                                                                                                 | 0      | <b>V</b> |

| P9-11 | Fault auto reset interval time  | 0.1s ~ 100.0s                              | 1.0s |           |
|-------|---------------------------------|--------------------------------------------|------|-----------|
|       |                                 |                                            |      |           |
| P9-12 | Input phase loss/ contactor     | Bit: Input phase loss protection selection | 11   | $\sqrt{}$ |
|       | pull protection selection       | Ten: Contactor pull protection options     |      |           |
|       |                                 | 0: Prohibited                              |      |           |
|       |                                 | 1: Allow                                   |      |           |
| P9-13 | Output phase loss protection    | 0: Prohibited                              | 1    | √         |
|       |                                 | 1: Allow                                   |      |           |
| P9-14 | First failure alarm type        | 0: No fault                                | -    | •         |
|       |                                 | 2: Over current in acceleration            |      |           |
|       |                                 | 3: Over current in deceleration            |      |           |
|       |                                 | 4: Over current in constant speed during   |      |           |
|       |                                 | 5: Over voltage in acceleration            |      |           |
|       |                                 | 6: Over voltage in deceleration            |      |           |
|       |                                 | 7: Over voltage in constant speed during   |      |           |
|       |                                 | 8: Buffer resistance overload              |      |           |
|       |                                 | 9: Under voltage                           |      |           |
|       |                                 | 10: Inverter overload                      |      |           |
|       |                                 | 11: Motor overload                         |      |           |
|       |                                 | 12: Input phase loss                       |      |           |
| P9-15 | Second fault alarm type         | 13: Output phase loss                      | -    | •         |
|       |                                 | 14: IGBT Module overheating                |      |           |
|       |                                 | 15: External fault                         |      |           |
|       |                                 | 16: Communication error                    |      |           |
|       |                                 | 17: Contactor is abnormal                  |      |           |
|       |                                 | 18: Current detection is abnormal          |      |           |
|       |                                 | 19: Motor tuning abnormal                  |      |           |
|       |                                 | 20: Encoder / PG card is abnormal          |      |           |
|       |                                 | 21: Parameter read and write exception     |      |           |
|       |                                 | 22: Inverter hardware abnormality          |      |           |
|       |                                 | 23: Motor to ground short circuit          |      |           |
| P9-16 | The third (latest one ) type of | 26: Running time arrives                   | -    | •         |
|       | failure                         | 29: Power-up time arrives                  |      |           |
|       |                                 | 30: Under load                             |      |           |
|       |                                 | 31: PID feedback is missing in running     |      |           |
|       |                                 | 40: Fast current limit timeout             |      |           |
|       |                                 | 41:Motor switch in running                 |      |           |
|       |                                 | 42: The speed deviation is too big         |      |           |
|       |                                 | 43: Motor over speed                       |      |           |
|       |                                 | 45: Motor over temperature                 |      |           |
| P9-17 | Frequency at when the third     | -                                          | _    | •         |
|       | (last) failure frequency        |                                            |      |           |
| P9-18 | Current at when the third       |                                            |      |           |
|       | Current at when the third       | -                                          |      |           |

|       | (last) failure frequency                                                |   |   |   |
|-------|-------------------------------------------------------------------------|---|---|---|
| P9-19 | DC bus voltage at when the third (last) failure frequency               | - | - | • |
| P9-20 | Input terminals status at when<br>the third (last) failure<br>frequency | - | - | • |
| P9-21 | Output terminals status at when the third (last) failure frequency      | - | - | • |
| P9-22 | Inverter status when the third (last) failure frequency                 | - | - | • |
| P9-23 | Power up time when the third (last) failure frequency                   | - | - | • |
| P9-24 | Running time when the third (last) failure frequency                    | - | - | • |
| P9-27 | Frequency at when the second failure                                    | - | - | • |
| P9-28 | Current at when the second failure                                      | - | - | • |
| P9-29 | DC bus voltage at when the second failure                               | - | - | • |
| P9-30 | Input terminals status at when the second failure                       | - | - | • |
| P9-31 | Output terminals status at when the second failure                      | - | - | • |
| P9-32 | Inverter status at when the second failure                              | - | - | • |
| P9-33 | Power up time when the second failure                                   | - | - | • |
| P9-34 | Running time when the second failure                                    | - | - | • |
| P9-37 | Frequency at when the third failure                                     | - | - | • |
| P9-38 | Current at when the third failure                                       | - | - | • |
| P9-39 | DC bus voltage at when the third failure                                | - | - | • |
| P9-40 | Input terminals status at when the third failure                        | - | - | • |

| P9-41 | Output terminals status at when the third failure            | -                                                                                                                                                                                 | -      | •        |
|-------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------|
| P9-42 | Inverter status at when the third failure                    | -                                                                                                                                                                                 | -      | •        |
| P9-43 | Power up time when the third failure                         | -                                                                                                                                                                                 | -      | •        |
| P9-44 | Running time when the third failure                          | -                                                                                                                                                                                 | -      | •        |
| P9-50 | Fault protection action selection 4                          | Bit: the speed deviation is too large (42) 0: Free stop 1: Stop by stop mode 2: Continue to run Ten: Motor over speed (43) Hundred places: initial position error (51)            | 00000  | V        |
| P9-54 | Running frequency of continue running when fault alarm       | O: Run at the current operating frequency 1: Run at set frequency 2: Run at the upper limit frequency 3: Run at the lower limit frequency 4: Run at an abnormal standby frequency | 0      | V        |
| P9-55 | An abnormal standby frequency                                | 0.0% ~ 100.0%<br>(100.0% corresponds to the maximum<br>frequency P0-10)                                                                                                           | 100.0% | √        |
| P9-56 | Motor temperature sensor type                                | 0: No temperature sensor<br>1: PT100<br>2: PT1000                                                                                                                                 |        | √        |
| P9-57 | Motor overheat protection threshold                          | 0°C ~ 200°C                                                                                                                                                                       | 110°C  | √        |
| P9-58 | Motor overheat pre-warning threshold                         | 0°C ~ 200°C                                                                                                                                                                       | 90℃    | √        |
| P9-59 | Working action of<br>Instantaneous power fail<br>selection   | 0: Invalid 1: Deceleration 2: Deceleration stop                                                                                                                                   | 0      | √        |
| P9-60 | Judgment voltage of instantaneous power fail pause           | 80.0% ~ 100.0%                                                                                                                                                                    | 90.0%  | √        |
| P9-61 | Voltage recovery judgment time when instantaneous power fail | 0.00s ~ 100.00s                                                                                                                                                                   | 0.50s  | √        |
| P9-62 | Judgment voltage of instantaneous power failure action       | 60.0% ~ 100.0%(Standard bus voltage)                                                                                                                                              | 80.0%  | <b>V</b> |

| P9-63 P9-64 P9-65 P9-67 P9-68 P9-69 | Load miss protection  Load miss detection level  Load miss detection time  Over speed detection  Over speed detection time | 0: Disable 1: Enable  0.0 ~ 100.0%  0.0 ~ 60.0s  0.0% ~ 50.0% ( Max frequency)  0.0s: No detect                                                                        | 0<br>10.0%<br>1.0s<br>20.0% | √            |
|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------|
| P9-65 P9-67 P9-68 P9-69             | Load miss detection time  Over speed detection  Over speed detection time                                                  | 0.0 ~ 60.0s<br>0.0% ~ 50.0%( Max frequency)<br>0.0s: No detect                                                                                                         | 1.0s<br>20.0%               | √            |
| P9-67 P9-68 P9-69                   | Over speed detection  Over speed detection time                                                                            | 0.0% ~ 50.0%( Max frequency)  0.0s: No detect                                                                                                                          | 20.0%                       |              |
| P9-68<br>P9-69                      | Over speed detection time                                                                                                  | 0.0s: No detect                                                                                                                                                        |                             | √            |
| P9-69                               |                                                                                                                            |                                                                                                                                                                        | 4.5                         | _            |
|                                     |                                                                                                                            | 0.1 ~ 60.0s                                                                                                                                                            | 1.0s                        | √            |
| DQ 70                               | Detection value of the speed deviation is too big                                                                          | 0.0% ~ 50.0%( Max frequency)                                                                                                                                           | 20.0%                       | √            |
| F 9-70                              | Detection time of speed deviation is too big.                                                                              | 0.0s: No detect<br>0.1 ~ 60.0s                                                                                                                                         | 5.0s                        | √            |
|                                     |                                                                                                                            | PA Group PID function                                                                                                                                                  | 1                           |              |
| PA-00                               | PID reference source                                                                                                       | 0: PA-01 1: Al1 2: Al2 3: Keyboard potentiometer 4: PULSE train setting (DI5) 5: Communication reference 6: Multi-step instructions reference                          | 0                           | √            |
| PA-01                               | PID value setting                                                                                                          | 0.0% ~ 100.0%                                                                                                                                                          | 50.0%                       | √            |
| PA-02                               | PID feedback source                                                                                                        | 0 : Al1 1: Al2 2: Keyboard potentiometer 3: Al1-Al2 4: PULSE setting (DI5) 5: Communication reference 6: Al1 + Al2 7: MAX (  Al1  ,   Al2  ) 8: MIN (  Al1  ,   Al2  ) | 0                           | √            |
| PA-03                               | PID working direction                                                                                                      | 0: Positive effect 1: Reverse effect                                                                                                                                   | 0                           | √            |
| PA-04                               | PID reference feedback range                                                                                               | 0 ~ 65535                                                                                                                                                              | 1000                        | √            |
| PA-05                               | Proportional gain Kp1                                                                                                      | 0.0 ~ 100.0                                                                                                                                                            |                             | <b>√</b>     |
| PA-06                               | Integral time Ti1                                                                                                          | 0.01s ~ 10.00s                                                                                                                                                         | 2.00s                       | √            |
| PA-07                               | Differential time Td1                                                                                                      | 0.000s ~ 10.000s                                                                                                                                                       | 0.000s                      | <b>√</b>     |
| DA 00                               | PID reversal cutoff frequency                                                                                              | 0.00 ~ Maximum frequency                                                                                                                                               | 2.00Hz                      | <b>√</b>     |
| PA-08                               | +                                                                                                                          | +                                                                                                                                                                      |                             |              |
| PA-08<br>PA-09                      | PID deviation limit                                                                                                        | 0.0% ~ 100.0%                                                                                                                                                          | 0.0%                        | $\checkmark$ |

| PA-11 | PID reference given change time                         | 0.00 ~ 650.00s                                                                                                                                                            | 0.00s  | √        |
|-------|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------|
| PA-12 | PID feedback filter time                                | 0.00 ~ 60.00s                                                                                                                                                             | 0.00s  | <b>√</b> |
| PA-13 | PID output filter time                                  | 0.00 ~ 60.00s                                                                                                                                                             | 0.00s  | √        |
| PA-14 | Reserve                                                 | -                                                                                                                                                                         | -      | √        |
| PA-15 | Proportional gain Kp2                                   | 0.0 ~ 100.0                                                                                                                                                               | 20.0   | √        |
| PA-16 | Integral time Ti2                                       | 0.01s ~ 10.00s                                                                                                                                                            | 2.00s  | √        |
| PA-17 | Derivative time Td2                                     | 0.000s ~ 10.000s                                                                                                                                                          | 0.000s | √        |
| PA-18 | PID parameter switching condition                       | 0: Do not switch 1: Switch via DI terminal 2: Automatic switching according to the deviation                                                                              |        | √        |
| PA-19 | PID parameter switching deviation 1                     | 0.0% ~ PA-20                                                                                                                                                              | 20.0%  | √        |
| PA-20 | PID parameter switching deviation 2                     | FA-19 ~ 100.0%                                                                                                                                                            | 80.0%  | <b>√</b> |
| PA-21 | PID initial value                                       | 0.0% ~ 100.0%                                                                                                                                                             | 0.0%   | <b>√</b> |
| PA-22 | PID initial value hold time                             | 0.00 ~ 650.00s                                                                                                                                                            | 0.00s  | <b>√</b> |
| PA-23 | The maximum value of positive deviations for two output | 0.00% ~ 100.00%                                                                                                                                                           |        | √        |
| PA-24 | The maximum value of reverse deviations for two output  | 0.00% ~ 100.00%                                                                                                                                                           |        | √        |
| PA-25 | PID integral property                                   | Bit: Integral separation 0: Invalid 1: Valid Ten:Whether to stop the integral working after outputting to the limit 0: Continue integral working 1: Stop integral working | 00     | <b>V</b> |
| PA-26 | PID feedback loss detection value                       | 0.0%:Do not judge feedback loss<br>0.1% ~ 100.0%                                                                                                                          | 0.0%   | <b>√</b> |
| PA-27 | PID Feedback loss detection time                        | 0.0s ~ 20.0s 0.                                                                                                                                                           |        | √        |
| PA-28 | PID calculating when stop                               | 0 : Don't execute calculating when stop 1: Execute PID calculating when stop                                                                                              | 0      | √        |
|       |                                                         | PD Group communication                                                                                                                                                    |        |          |
| PD-00 | Communication baud rate                                 | bit : MODBUS                                                                                                                                                              | 6005   | √        |

|       | T                       |                                           | 1       |          |
|-------|-------------------------|-------------------------------------------|---------|----------|
|       |                         | 0:300BPS                                  |         |          |
|       |                         | 1: 600BPS                                 |         |          |
|       |                         | 2:1200BPS                                 |         |          |
|       |                         | 3:2400BPS                                 |         |          |
|       |                         | 4:4800BPS                                 |         |          |
|       |                         | 5:9600BPS                                 |         |          |
|       |                         | 6:19200BPS                                |         |          |
|       |                         | 7:38400BPS                                |         |          |
|       |                         | 8:57600BPS                                |         |          |
|       |                         | 9 : 115200BPS                             |         |          |
|       |                         | Ten: Profibus-DP                          |         |          |
|       |                         | 0: 115200BPs                              |         |          |
|       |                         | 1: 208300BPs                              |         |          |
|       |                         | 2: 256000BPs                              |         |          |
|       |                         | 3 : 512000Bps                             |         |          |
|       |                         | Hundred places: reserved                  |         |          |
| PD-01 | MODBUS data format      | 0: No parity (8-N-2)                      | 0       | <b>√</b> |
|       |                         | 1: Even check (8-E-1)                     |         |          |
|       |                         | 2: Odd parity (8-O-1)                     |         |          |
|       |                         | 3: No parity (8-N-1)                      |         |          |
|       |                         | (MODBUS active)                           |         |          |
| PD-02 | Local address           | 0 : Broadcast address                     | 1       | √        |
|       |                         | 1~249                                     |         |          |
|       |                         | (MODBUS、Profibus-DP、CANlink enable )      |         |          |
| PD-03 | MODBUS respond relay    | 0 ~ 20ms                                  | 2       | <b>√</b> |
|       |                         | (MODBUS enable)                           |         |          |
|       |                         |                                           |         |          |
|       | PE Sola                 | r Pump inverter control parameters        |         |          |
| PE-00 | Solar pump control mode | 0:Disable of solar pump control           | 1       | Х        |
|       |                         | (Another way for Solar control mode       |         |          |
|       |                         | disable By: a: Terminal control:P0-02=1   |         |          |
|       |                         | b: Switch on DI3 and COM:P4-02=53)        |         |          |
|       |                         | 1: Enable (Algorithm-1, High efficiency ) |         |          |
|       |                         | 2: Enable (Algorithm-2, High stability)   |         |          |
| PE-01 | Solar pump control mode | 1 Bit: Vmpp mode selecting                | H.0.1.1 | √        |
|       | option                  | 0: Vmp set by PE-02 manually (CVT)        |         |          |
|       |                         | 1: MPPT automatically                     |         |          |
|       |                         | Ten: Voc ( open loop voltage of PV )      |         |          |
|       |                         | detect mode                               |         |          |
|       |                         | 0: Voc set by PE-03 manually              |         |          |
|       |                         | 1: Voc detect automatically               |         |          |
|       |                         | Hundred: Auto running by keypad           |         |          |
|       |                         | 0: Disable                                |         |          |

|       | T                                | I                                       |         |   |
|-------|----------------------------------|-----------------------------------------|---------|---|
|       |                                  | 1: Auto start/stop in keypad control    |         |   |
|       |                                  | mode. Inverter will automatically start |         |   |
|       |                                  | when power on after 5 seconds only on   |         |   |
|       |                                  | keypad control mode.                    |         |   |
| PE-02 | CVT voltage set by manual        | 0 -100%                                 | 80%     | √ |
| PE-03 | Voc ( open loop voltage ) set    | 0.0V-1000.0V                            | 650V/   | V |
|       | manually                         |                                         | 380V    |   |
| PE-04 | DC bus voltage stability         | 0.0% - 999.9%                           | 100.0%  | √ |
|       | Proportional gain                |                                         |         |   |
| PE-05 | DC bus voltage stability         | 0.0% - 999.9%                           | 100.0%  | √ |
|       | Integral gain                    |                                         |         |   |
| PE-06 | DC bus voltage stability         | 0.0% - 999.9%                           | 5%      | √ |
|       | differential gain                |                                         |         |   |
| PE-07 | Initial point of fast frequency  | 0.0 - 100.0%                            | 5.0%    | √ |
|       | drop                             |                                         |         |   |
| PE-08 | Stop point of fast frequency     | 0.0 - 100.0%                            | 50.0%   |   |
|       | drop                             |                                         |         |   |
| PE-09 | Weak magnetic limit multiples    | 0.0- 9.9                                | 1.2     |   |
| PE-10 | Mppt search upper limit          | 0.0% - 100.0%                           | 90%     | √ |
|       | voltage                          |                                         |         |   |
| PE-11 | Mppt search lower limit          | 0.0% - 100.0%                           | 75%     | √ |
|       | voltage                          |                                         |         |   |
| PE-12 | MPPT search gain                 | 0% - 500%                               | 100%    | √ |
| PE-13 | MPPT search interval             | 0.0 - 10.0sec                           | 2.0sec  | √ |
| PE-14 | Stabilizer filtering time (solar | 0-1000ms                                | 50ms    |   |
|       | pump control mode2)              |                                         |         |   |
| PE-15 | Reserve                          | 0                                       | 0       |   |
| PE-16 | Sleep voltage threshold          | 0.0 - 1000.0V                           | 250.0V/ | √ |
|       |                                  |                                         | 150.0V  |   |
| PE-17 | Wake up voltage threshold        | 0.0 - 1000.0V                           | 350.0V/ | √ |
|       |                                  |                                         | 250.0V  |   |
| PE-18 | Awake waiting time               | 0 - 30000sec                            | 60sec   | √ |
| PE-19 | Stop frequency setting when      | 0.00Hz ~ 300.00Hz                       | 10.00Hz | √ |
|       | low speed                        |                                         |         |   |
| PE-20 | Detecting time of low            | 0 - 30000sec                            | 20sec   | √ |
|       | frequency protection             |                                         |         |   |
| PE-21 | Low speed protection auto        | 0 - 30000sec                            | 60sec   | √ |
|       | reset delay time                 |                                         |         |   |
| PE-22 | Dry run protection detecting     | 0.0 - 999.9A                            | 0.0A    | √ |
|       | current                          |                                         |         |   |
| PE-23 | Dry run protection detecting     | 0 - 30000sec                            | 10sec   | √ |
|       | time                             |                                         |         |   |
| PE-24 | Dry run protection auto reset    | 0 - 30000sec                            | 60sec   | √ |

|       | relay time                       |                                       |           |          |
|-------|----------------------------------|---------------------------------------|-----------|----------|
| PE-25 | Detecting current of over        | 0.0 - 999.9A                          | 0.0A      | √        |
|       | current protection               |                                       |           |          |
| PE-26 | Detecting time of over current   | 0 - 30000sec                          | 10sec     | √        |
|       | protection                       |                                       |           |          |
| PE-27 | Over current auto reset delay    | 0 - 30000sec                          | 60sec     | √        |
|       | time                             |                                       |           |          |
| PE-28 | DC bus voltage drop              | 0.0% - 100.0%                         | 90.0%     | √        |
| PE-29 | Frequency detect when            | 0.0% - 100.0%                         | 15.0%     | √        |
|       | voltage drop                     | 0.076 - 100.076                       | 13.070    |          |
| PE-30 | Minimum power protection         | 0 - 30000sec                          | 300sec    | √        |
|       | auto reset delay time            |                                       |           |          |
| PE-31 | Water tank full level detecting  | Digit: Water full detect mode         | H0.0.0    | √        |
|       | method                           | 0: Single point detect                |           |          |
|       |                                  | 1: 2 points detect                    |           |          |
|       |                                  | 2: Al1 analog                         |           |          |
|       |                                  | 3: Al2 analog                         |           |          |
|       |                                  | Ten: Single point detect 51# function |           |          |
|       |                                  | logic detection selecting             |           |          |
|       |                                  | Hundred: Single point detect 52#      |           |          |
|       |                                  | function logic detection selecting.   |           |          |
|       |                                  | 0: Normal Open, work when open, stop  |           |          |
|       |                                  | when switch on                        |           |          |
|       |                                  | 1: Normal close, work when close,     |           |          |
|       |                                  | stop when open.                       |           |          |
| PE-32 | Water full level detecting       | 0 - 100.0%                            | 25.0%     | √        |
|       | threshold of analog              |                                       |           |          |
| PE-33 | Water full level reach           | 0 - 30000sec                          | 10sec     | √        |
|       | protection detecting time        |                                       |           |          |
| PE-34 | Water full level protection exit | 0 - 30000sec                          | 10 sec    | √        |
|       | relay time                       |                                       |           |          |
| PE-35 | Water level sensor probe         | 0 - 100.0%                            | 0.0%      | √        |
|       | damage threshold                 |                                       |           |          |
| PE-36 | DC current correction factor     | 0.0 - 200.0%                          | 100.00%   | √        |
| PE-37 | DC current correction bias       | -100.00A - 100.00A                    | 0.00A     | √        |
| PE-38 | Power point 0 of PQ Current      | 0.0kw - 999.9kw                       | 0.5kw     | √        |
| PE-39 | Power point 1 of PQ Current      | 0.0kw - 999.9kw                       | 1.0kw     | √        |
| PE-40 | Power point 2 of PQ Current      | 0.0kw - 999.9kw                       | 1.5kw     | √        |
| PE-41 | Power point 3 of PQ Current      | 0.0kw - 999.9kw                       | 2.0kw     | √        |
| PE-42 | Power point 4 of PQ Current      | 0.0kw - 999.9kw                       | 2.5kw     | √        |
| PE-43 | Flow point 0 of PQ curve         | 0.0 - 999.9m^3/h                      | 0.0 m^3/h | √        |
| PE-44 | Flow point 1 of PQ curve         | 0.0 - 999.9m^3/h                      | 5.0 m^3/h | √        |
| PE-45 | Flow point 2 of PQ curve         | 0.0 - 999.9m^3/h                      | 10.0m^3/h | <b>√</b> |

| _                               |                                     |        |                                |           |              |  |  |
|---------------------------------|-------------------------------------|--------|--------------------------------|-----------|--------------|--|--|
| PE-46                           | Flow point 3 of PQ curve            | 0.0 -  | 999.9m^3/h                     | 15.0m^3/h | √            |  |  |
| PE-47                           | Flow point 4 of PQ curve            | 0.0 -  | 999.9m^3/h                     | 20.0m^3/h | √            |  |  |
| PE-48                           | Initiating frequency of dry run     | 0.00   | - 320.00Hz                     | 0.0Hr     | √            |  |  |
|                                 | protection                          |        |                                |           |              |  |  |
| PE-49                           | Sleep power setting                 | 0.0%   | - 100.0%                       | 0.0%      | √            |  |  |
| PE-50                           | Detecting time of sleep power       | 0 - 30 | 0000sec                        | 60sec     | √            |  |  |
| PE-51                           | Sleep frequency                     | 0.00H  | Hz ~ 300.00Hz                  | 10.00Hz   | √            |  |  |
|                                 | PP Factory function code management |        |                                |           |              |  |  |
| PP-00                           | User password                       |        | 0 ~ 65535                      | 0         | √            |  |  |
| PP-01                           | Parameter initialization            |        | 0: No operation                | 0         | $\checkmark$ |  |  |
|                                 |                                     |        | 1: Reset parameters to factory |           |              |  |  |
|                                 |                                     |        | default( not include motor     |           |              |  |  |
|                                 |                                     |        | parameters)                    |           |              |  |  |
|                                 |                                     |        | 2: Clear record information    |           |              |  |  |
| PP-05                           | Distributor unlock password         |        | 0 - 65535                      |           |              |  |  |
| PF Distributor password setting |                                     |        |                                |           |              |  |  |
| PF-06                           | PF-06 Distributor password setting  |        | 0 - 65535                      |           |              |  |  |
| PF-07                           | Distributor allow total running ti  | me     | 0 - 65535Hr                    | Max. 7.4  |              |  |  |
|                                 |                                     |        |                                | Year      |              |  |  |
|                                 |                                     |        |                                |           |              |  |  |

#### Chapter 7. Explanation for special parameters

Some parameters description which may relative with solar pump control.

|       | Motor control mode |                                      | Factory setting                               | 0 |
|-------|--------------------|--------------------------------------|-----------------------------------------------|---|
|       | 0 1 2 3 4          | 0                                    | VF control                                    |   |
| DO 01 |                    | 1                                    | Open loop sensorless vector control           |   |
| P0-01 |                    | 2                                    | Close loop sensor vector control with PG card |   |
|       |                    | 2 wires output for single phase pump |                                               |   |
|       |                    | 4                                    | 3 wires output for single phase pump          |   |

- 3: 2 wires output for single phase pumps when capacitors can't removed.
- 4: 3 wires output for single phase pumps when starting capacitors removed

|       | Running command |   | Factory setting                       | 0              |
|-------|-----------------|---|---------------------------------------|----------------|
|       | source          |   |                                       |                |
| P0-02 |                 | 0 | Keyboard/ keypad/ operation panel ( L | _ED turn off ) |
|       | Setting         | 1 | Terminals control ( LED turn ON )     |                |
|       |                 | 2 | Communication ( LED Flash )           |                |

<sup>0:</sup> Keypad (operation panel); The running command is given by keypad.

Refer to P4 parameters of input terminals command.

Example: When DI1 and COM is short circuit connection and P4-00 = 1, then you will get a auto-start in the morning and auto-stop when sundown function.

| P0-15 | Carrier frequency | Factory setting  | Per model |
|-------|-------------------|------------------|-----------|
| PU-13 | Setting range     | 0.5kHz ~ 16.0kHz |           |

It uses to adjust the carrier frequency. By adjusting the carrier frequency can reduce the motor noise, to avoid the resonance point of the mechanical system, to reduce the line to ground leakage current and reduce the interference generated by the inverter

When the carrier frequency is low, the output current harmonic component increases, the motor loss increases, the motor temperature rise.

When the carrier frequency is high, the motor loss decreases, the motor temperature decreases, but the inverter loss increases, the inverter temperature increases, interference increases.

Adjusting the carrier frequency affects the following performance:

| Carrier frequency               | Low → High  |
|---------------------------------|-------------|
| Motor noise                     | Big → Small |
| Output current waveform         | Low → Good  |
| Motor temperature rise          | High → Low  |
| Inverter temperature rise       | Low → High  |
| Leakage current                 | Small → Big |
| External radiation interference | Small → Big |

<sup>1:</sup> External terminals; The running command controlled by multiple function terminals.

|       | Motor type    |   | Factory setting                             | 0                |
|-------|---------------|---|---------------------------------------------|------------------|
| P1-00 |               | 0 | General asynchronous motor                  |                  |
|       | C III         | 1 | Variable frequency asynchronous motor       |                  |
|       | Setting range | 2 | Permanent magnet synchronous motor          |                  |
|       |               |   | (PMSM)                                      |                  |
| P1-01 | Rated power   |   | Factory setting                             | As per model     |
| PI-UI | Setting range |   | 0.1KW ~ 1000.0KW                            |                  |
| D1 02 | Rated voltage |   | Factory setting                             | As per model     |
| P1-02 | Setting range |   | 1V ~ 2000V                                  |                  |
|       | Rated current |   | Factory setting                             | As per model     |
| P1-03 | Setting range |   | Power of inverter <= 55KW : 0.01A ~ 655.35A |                  |
|       |               |   | Power of inverter > 55KW                    | : 0.1A ~ 6553.5A |
| D4 04 | Rated power   |   | Factory setting                             | As per model     |
| P1-04 | Setting range |   | 0.01Hz ~ Max power of inverter              |                  |
| D4 05 | Rated speed   |   | Factory setting                             | As per model     |
| P1-05 | Setting range |   | 1rpm ~ 65535rpm                             |                  |

Set above parameters for motor to protect and perform better!

| P4 Group input terminals |                            |                                                                       |    |   |
|--------------------------|----------------------------|-----------------------------------------------------------------------|----|---|
| P4-00                    | DI1 digital input function | 0: No function 1: Forward run FWD or run command                      | 1  | Χ |
| P4-01                    | DI2 digital input function | 2: Reverse run REV or forward and reverse run direction               | 53 | Χ |
| P4-02                    | DI3 digital input function | 8: Free stop 9: Fault reset (RESET)                                   | 9  | Χ |
| P4-03                    | DI4 digital input function | 10: Run pause 51:Water tank full detect 1 52:Water tank full detect 2 |    | Χ |
| P4-04                    | DI5 digital input function | 53:MPPT tracking stop/ solar pump control disable                     | 52 | Χ |

51 and 52 two digital input for water level full function activating.

Install a height place aside from water full leveling to form a water full detection hysteresis.

53: User can use to this function to disable solar pump control function by terminals.

When this function is activated, inverter will work AC mode and exit of solar control mode.

#### PE solar pump control parameters explanation:

|       |                         | 0: Disable                                |   |
|-------|-------------------------|-------------------------------------------|---|
| PE-00 | Solar pump control mode | 1: Enable (Algorithm-1, High efficiency ) | 1 |
|       |                         | 2: Enable (Algorithm-2, High stability )  |   |

When choose 1 for high efficiency ,its related parameters:PE-04,PE-05,PE-06 for MPPT gain.

When choose 2 for high stability ,its related parameters:PE-12,PE-13,PE-14 for MPPT gain.

| PE-04 | DC bus voltage stability gain              | 0.0% - 999.9% | 100.0% |
|-------|--------------------------------------------|---------------|--------|
| PE-05 | DC bus voltage stability Integral gain     | 0.0% - 999.9% | 100.0% |
| PE-06 | DC bus voltage stability differential gain | 0.0% - 999.9% | 0.0%   |

| PE-04 to   |                                      |              |        |
|------------|--------------------------------------|--------------|--------|
| PE-06      |                                      |              |        |
| use to     |                                      |              |        |
| adjust     |                                      |              |        |
| MPPT       |                                      |              |        |
| tracking   |                                      |              |        |
| ratio,     | Initial point of fact frequency drop | 0.0 - 100.0% | 5.00%  |
| and        | Initial point of fast frequency drop | 0.0 - 100.0% | 3.00%  |
| keep DC    |                                      |              |        |
| bus        |                                      |              |        |
| voltage    |                                      |              |        |
| in         |                                      |              |        |
| stability. |                                      |              |        |
| PE-07      |                                      |              |        |
| PE-08      | Stop point of fast frequency drop    | 0.0 - 100.0% | 50.00% |

In some cloudy case, the inverter can't get enough solar energy from PV arrays, so we program inverter drop frequency quickly, make pump in generating mode, feedback energy to inveter to maintain DC bus voltage.PE-07=0, frequency quick drop function is disable.

| PE-09 | Weak magnetic limit multiples                        | 0.0- 9.9      | 1.2    |
|-------|------------------------------------------------------|---------------|--------|
| PE-10 | Mppt search upper limit voltage                      | 0.0% - 100.0% | 90%    |
| PE-11 | Mppt search lower limit voltage                      | 0.0% - 100.0% | 75%    |
| PE-12 | MPPT search gain                                     | 0% - 500%     | 100%   |
| PE-13 | MPPT search interval                                 | 0.0 - 10.0sec | 2.0sec |
| PE-14 | Stabilizer filtering time (sold pump control mode 2) | 0-1000ms      | 50ms   |

PE-10/PE-11 use to set Vmpp range, and PE-12 is used to set MPPT searching gain, and PE-13 is used to set MPPT searching interval time. When the output frequency is fluctuating after activated MPPT searching, the performance can be improved by reducing PE-12 MPPT searching gain value and increase PE-13 the MPPT searching interval

| PE-16 | Sleep voltage threshold   | 0.0 - 1000.0V | 250V/150V |
|-------|---------------------------|---------------|-----------|
| PE-17 | Wake up voltage threshold | 0.0 - 1000.0V | 350V/250V |
| PE-18 | Awake waiting time        | 0 - 30000sec  | 60sec     |

PE-16 to FE-18 use to set solar pump inverter if go to sleep mode when input DC voltage is too low, and wake up automatically when DC bus voltage recovery again.

When the DC voltage is lower than FE-16 setting value for a system default time, it will go to sleep and sent out A.SLP alarm code. When DC bus voltage raises again and higher than PE-17 value for a FE-18 setting time, the inverter will be wake up to work again.

| PE-19 | Stop frequency setting when low speed      | 0.00Hz ~ 300.00Hz | 10.00Hz |
|-------|--------------------------------------------|-------------------|---------|
| PE-20 | Detecting time of low frequency protection | 0 - 30000sec      | 20sec   |
| PE-21 | Low speed protection auto reset delay time | 0 - 30000sec      | 60sec   |

If the output frequency is lower than PE-19 for a low speed detecting time PE-20, the solar pump inverter will stop to running and sent out A.LFr alarm.

Once the output frequency is greater than PE-19 for PE-21( automatic recover time), the inverter will restore to working.

| PE-22                           | Dry run protection current<br>threshold ( under-load<br>protection ) | 0.0 - 999.9A | 0.0A  |
|---------------------------------|----------------------------------------------------------------------|--------------|-------|
| PE-23 Dry run detect delay time |                                                                      | 0 - 30000sec | 10sec |
| PE-24                           | Automatic recover time in dry run protection mode                    | 0 - 30000sec | 60sec |

If the output current is lower than PE-22 ( Dry run current) for PE-23( dry run detect delay time), the inverter will go to dry run protection mode and sent out A.LLd alarm.

Once the current is bigger than PE-22 again for PE-24 (recover time of dry run), the inverter will restore to working.

| PE-25                                | Motor over current protection threshold | 0.0 - 999.9A | 0.0A  |  |
|--------------------------------------|-----------------------------------------|--------------|-------|--|
| PE-26 Over current detect delay time |                                         | 0 - 30000sec | 10sec |  |
| PF-27                                | Automatic recovery time in              | 0 - 30000sec | 60sec |  |
| 1                                    | over current protection mode            | 0 30000300   | 00360 |  |

PE-25,PE-26, PE-27 parameters are used to set motor over current protection.

If the over current is bigger than PE-25 for PE-26time, the drive will go to stop mode for providing motor protection and sent out A.OLd alarm.

Once the current is lower than PE-25 for PE-27 recover time, inverter will recover to work again.

|       |                                        | Digit: Water full detect mode |       |
|-------|----------------------------------------|-------------------------------|-------|
|       |                                        | 0: 1 point detect             |       |
|       |                                        | 1: 2 points detect            |       |
|       |                                        | 2: Al1 analog                 |       |
|       |                                        | 3: AI2 analog                 |       |
|       |                                        | Ten: Single point detect 51#  |       |
|       | Water tank full level detecting method | function logic detection      |       |
| PE-31 |                                        | selecting                     | H0.00 |
|       |                                        | Hundred: Single point detect  |       |
|       |                                        | 52# function logic detection  |       |
|       |                                        | selecting.                    |       |
|       |                                        | 0: Normal Open, work when     |       |
|       |                                        | open, stop when switch on     |       |
|       |                                        | 1: Normal close, work when    |       |
|       |                                        | close,                        |       |

MPPT solar pump inverter operation manual (V11)

|       |                                                  | stop when open. |       |
|-------|--------------------------------------------------|-----------------|-------|
|       |                                                  |                 |       |
| PE-32 | Water full level detecting threshold of analog   | 0 - 100.0%      | 25.0% |
| PE-33 | Water full level reach protection detecting time | 0 - 30000sec    | 10sec |
| PE-34 | Water full level protection exit relay time      | 0 - 30000sec    | 60sec |
| PE-35 | Water level sensor probe damage threshold        | 0 - 100.0%      | 0.0%  |

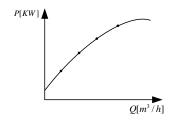
PE-31 parameter is used to set detecting method of water tank leveling.

The 1 point digital terminal water tank full detecting is default setting. There are normal open and normal close for selection.

For water well dry run detection, we can select normal close of digital function.

For water tank full detection, we can select normal open of digital function.

If select 2 points digital terminals full detect, please see below explanation:


Any 2 terminals (DI4 and DI5 are in default setting) can use to set for terminals digital detecting, the function code is 51/or 52. If both terminals are valid, it can able to activate water tank fulling protection, if both terminals are invalid, the water tank full is disable, only one terminals is valid, keep no changing of current working status.

PE-33/PE-34 are used to set water full detecting time and protection exit relay time.

PE-35 is used to set analog sensor damage detection threshold, when PE-31 is set for analog detecting, and feedback analog value larger than PE-35 setting threshold, and will judge the sensor is broken, submit A.Prb alarm as well, and inverter stop to working; The sensor probe detecting is disable when PE-31 set for 0.

| PE-38 | Power point 0 of PQ Current | 0.0kw - 999.9kw  | 0.5kw     |
|-------|-----------------------------|------------------|-----------|
| PE-39 | Power point 1 of PQ Current | 0.0kw - 999.9kw  | 1.0kw     |
| PE-40 | Power point 2 of PQ Current | 0.0kw - 999.9kw  | 1.5kw     |
| PE-41 | Power point 3 of PQ Current | 0.0kw - 999.9kw  | 2.0kw     |
| PE-42 | Power point 4 of PQ Current | 0.0kw - 999.9kw  | 2.5kw     |
| PE-43 | Flow point 0 of PQ curve    | 0.0 - 999.9m^3/h | 0.0 m^3/h |
| PE-44 | Flow point 1 of PQ curve    | 0.0 - 999.9m^3/h | 5.0 m^3/h |
| PE-45 | Flow point 2 of PQ curve    | 0.0 - 999.9m^3/h | 10.0m^3/h |
| PE-46 | Flow point 3 of PQ curve    | 0.0 - 999.9m^3/h | 15.0m^3/h |
| PE-47 | Flow point 4 of PQ curve    | 0.0 - 999.9m^3/h | 20.0m^3/h |

The set of parameters calculates the output flow rate (U0-13) based on the output power (U0-05), user can program PE-38  $\sim$  PE-47 according to P-Q curve of pumps, and U0-13 flow rated can be calculated by software.



| PE-48 | Initiating frequency of dry run protection | 0.00 - 320.00Hz   | 0.0Hz   | <b>√</b> |
|-------|--------------------------------------------|-------------------|---------|----------|
| PE-49 | Sleep power setting                        | 0.0% - 100.0%     | 0.0%    | √        |
| PE-50 | Detecting time of sleep power              | 0 - 30000sec      | 60sec   | <b>√</b> |
| PE-51 | Sleep frequency                            | 0.00Hz ~ 300.00Hz | 10.00Hz | √        |

PE-48 parameters use to select dry run function starting frequency. Only the output frequency is higher than this setting, the dry run is activated.

The inverter can able to detect sleep voltage and sleep power when enter to sleep mode

PE-49, PE-50 and PE-51 for power judge sleep mode.

When PE-49=0.0%, the inverter goes to sleep mode by judging sleep voltage PE-17.

When PE-49 is not =0.0%, the inverter goes to sleep mode by judging sleep power.

(If the power less than PE-49 and output frequency is lower than PE-51 for PE-50 relay time, inverter will go to sleep mode.)

Chapter 8. Monitoring parameters

| Monitor parameters | Monitoring contents                   | Unit      | Address |
|--------------------|---------------------------------------|-----------|---------|
| U0-00              | Output frequency                      | 0.01Hz    | 7000H   |
| U0-01              | Preset frequency                      | 0.01Hz    | 7001H   |
| U0-02              | DC voltage of PV arrays               | 0.1V      | 7002H   |
| U0-03              | Output voltage                        | 1V        | 7003H   |
| U0-04              | Output current                        | 0.01A     | 7004H   |
| U0-05              | Power of PV arrays                    | 0.1KW     | 7005H   |
| U0-06              | Current of PV arrays                  | 0.01A     | 7006H   |
| U0-07              | DI input status                       | 1         | 7007H   |
| U0-08              | DO output status                      | 1         | 7008H   |
| U0-09              | Al1                                   | 0.01V     | 7009H   |
| U0-10              | AI2                                   | 0.01V     | 700AH   |
| U0-11              | Motor (pump ) speed                   | 1rpm      | 700BH   |
| U0-12              | PV open loop circuit voltage (Voc)    | 0.1V      | 700CH   |
| U0-13              | Flow rate of pump                     | 0.1m^3/hr | 700DH   |
| U0-14              | Day flow                              | 0.1m^3    | 700EH   |
| U0-15              | Flow accumulation ( low-order digit ) | 0.1m^3    | 700FH   |
| U0-16              | flow accumulation ( low-order digit ) | 0.1Km^3   | 7010H   |

| U0-17 | Day generated power                             | 0.1kwh | 7011H |
|-------|-------------------------------------------------|--------|-------|
| U0-18 | Generated accumulation ( low-<br>order digit )  | 0.1kwh | 7012H |
| U0-19 | Generated accumulation ( high-<br>order digit ) | 0.1Mwh | 7013H |
| U0-20 | The rest running time                           | 0.1Min | 7014H |
| U0-24 | Pump running speed                              | r/min  | 7018H |
| U0-25 | Current power up time                           | 1min   | 7019H |
| U0-26 | Current running time                            | 0.1min | 701AH |
| U0-45 | Fault information                               | 1      | 702DH |
| U0-61 | Inverter working status                         | 1      | 703DH |

# Chapter 9. Trouble-shooting

| chapter 5. Housie Shooting |                  |                          |                                               |  |
|----------------------------|------------------|--------------------------|-----------------------------------------------|--|
| Alarm code                 | Alarm index code | Alarm description        | Solutions                                     |  |
|                            |                  |                          | 1.Check total solar power input, the total    |  |
|                            |                  |                          | power of solar arrays should be bigger 1.3    |  |
| A.SLP                      | 81               | Sleep mode               | times of the pump.                            |  |
| A.SLP                      | 01               | Sieep Mode               | 2.Check if enough DC Vmp,                     |  |
|                            |                  |                          | 3. Increase the PE-04 and PE-05 value         |  |
|                            |                  |                          | 4. Check PE-16 setting                        |  |
|                            |                  |                          | If the output frequency is lower PE-19        |  |
| A.LFr                      | 82               | Low frequency protection | setting,this alarm will be activated for      |  |
| A.LFI                      |                  |                          | pumps protection, please set PE-19 for low    |  |
|                            |                  |                          | value if need.                                |  |
| A.LLd                      | 02               | Dry run/under load       | Set PE-22 value to disable this alarm.        |  |
| A.LLU                      | 83               | protection               | Set FE-22 value to disable this diam.         |  |
| A.OLd                      | 84               | Over current/ over load  | Set over current PE-25 for low or set for 0.  |  |
| A.OLU                      | 04               | protection               | Set over current i E 23 for low of set for 0. |  |
| A.LPr                      | 85               | Minimum power            | Waiting for recovery                          |  |
| A.FuL                      | 86               | Water tank fulling       | To check if water is fulling                  |  |
| A.Prb                      | 87               | Analog sensor problem    | To check if the sensor is broken or set PE-35 |  |
| A.PID                      | 07               | failure                  | for lower                                     |  |
| Err.98                     | 98               | Distributor running time | Contact with your distributor                 |  |
| E11.90                     | 90               | reach                    | Contact with your distributor                 |  |

| Alarm<br>code    | Alarm<br>description         | Possible reason                                                                                                                                                                                                                                       | Solutions                                                                                                                                                                                                                     |
|------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Err01            | Inverter unit protection     | <ol> <li>The inverter output short circuit</li> <li>The motor and inverter wiring is too long</li> <li>The module overheating</li> <li>The inverter wiring is loose</li> <li>The circuit board abnormal</li> <li>Inverter module exception</li> </ol> | 1, Excluding the external fault 2, Install the reactor or output filter 3, Check the air duct is blocked; 4, Plug all the cable 5, Seek technical support                                                                     |
| Err02/<br>Er.oC1 | Over current in acceleration | 1, Motor to ground short circuit 2, Not perform auto tuning 3, The acceleration time is too short 4, Torque boost is not appropriate 5, The grid voltage is low 6, Loading suddenly in acceleration 7, The using Inverter power is small              | 1, Excluding the external fault 2, Perform motor ID auto tuning 3, Increase the acceleration time 4, Adjust the torque boost or V / F curve 5, Adjust voltage of power supply 6, Adjust the load 7, Select big power inverter |
| Err03/           | Over current in              | 1, Output short circuit or output to                                                                                                                                                                                                                  | 1, Excluding the external fault                                                                                                                                                                                               |

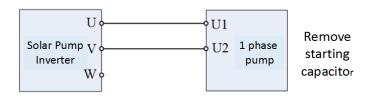
|         | 1 1                  |                                          | 0.0 (                                  |
|---------|----------------------|------------------------------------------|----------------------------------------|
| Er.oC2  | deceleration         | ground                                   | 2, Perform motor ID auto tuning        |
|         |                      | 2, No performance ID auto tuning for     | 3, Increase the acceleration time      |
|         |                      | carrying vector control                  | 4, Adjust voltage of power supply to   |
|         |                      | 3, The deceleration time is too short    | normal                                 |
|         |                      | 4, The voltage is low                    | 5, Cancel the suddenly adding load     |
|         |                      | 5, Loading suddenly when                 | 6, Install braking unit or braking     |
|         |                      | deceleration                             | resistor                               |
|         |                      | 6, No installing of brake unit and brake |                                        |
|         |                      | resistor                                 |                                        |
|         |                      | 1, The inverter output short circuit or  | 1, Excluding the external fault        |
|         |                      | phase to ground                          | 2, Perform motor ID auto tuning        |
|         |                      | 2, No performance ID auto tuning for     | 3, Cancel the sudden loading           |
| F 04/   | Over current in      | carrying vector control                  | 4, Cancel the suddenly adding load     |
| Err04/  | constant speed       | 3, The voltage of grid is low            | 5. Select big power inverter instead   |
| Er.oC3  | running              | 4, Whether there is a sudden load in     |                                        |
|         |                      | running                                  |                                        |
|         |                      | 5, The using Inverter capacity (rated    |                                        |
|         |                      | power is small                           |                                        |
|         |                      | 1, The input voltage is high             | 1, Adjust voltage to the normal range  |
|         |                      | 2, The acceleration process there is an  | Cancel the additional force or install |
| Err05/  | Over voltage in      | external drag motor running              | braking resistor                       |
| Er.oU1  | acceleration         | 3, The acceleration time is too short    | 3, Increase the acceleration time      |
| 21.001  | acco.c.a.c.          | 4, No brake unit and brake resistor      | 4, Install the braking unit or braking |
|         |                      |                                          | resistor                               |
|         |                      | 1, The input voltage is high             | 1, Adjust voltage to normal range      |
|         |                      | 2, The process of deceleration there is  | 2, Cancel the additional force or      |
| Err06/  | Deceleration         | an external drag motor running           | install braking resistor               |
| Er.oU2  | overvoltage          | 3, Deceleration time is too short        | 3, Increase acceleration time          |
| 2002    | evel vellage         | 4, No brake unit and brake resistor      | 4, Install the braking unit or braking |
|         |                      | , , , , to state afficant state resistor | resistor                               |
|         |                      | 1, Input voltage is high                 | Increase voltage go normal range       |
| Err07/  | Over voltage in      | , , ,                                    | 2. Cancel external force or install    |
| Er.oU3  | constant speed       | an external drag motor running           | braking resistor                       |
| Err08/  | Fault of control     | Input voltage is out of limit            | Adjust voltage to normal range         |
|         | section power supply | pat voltage is out or illilit            | , agast voltage to normal range        |
| 21.0111 |                      | 1, Instantaneous power failure           | 1, Reset the fault                     |
|         |                      | 2, Input voltage is out of limit         | 2, Adjust the voltage to the normal    |
| Err09/  |                      | DC bus voltage is abnormal               | range                                  |
| Er.LU1  | Onder voltage fault  | =                                        | 3, seek technical support              |
|         |                      | is not normal                            | o, seek technical support              |
|         |                      |                                          | 1 Padusa the land and shadiths         |
| F10     |                      | 1 If load is too big, or motor is        | 1. Reduce the load and check the       |
| Err10   | Inverter over load   | blocked or not                           | motor and machine condition            |
| /Er.oL1 |                      | Using inverter capacity is too small     | 2. Select bigger one capacity of       |
|         |                      |                                          | motor                                  |

| 1, The motor protection parameter P9- Set correct parameter                       |                  |
|-----------------------------------------------------------------------------------|------------------|
|                                                                                   | er               |
| 01 set is appropriate Reduce load or chec                                         | k motor and      |
| Err11 Motor overload 2, The load is too large or motor is driving machine         |                  |
| /Er.oL1 blocked Select bigger power                                               | inverter         |
| 3, Using the power of inverter too                                                |                  |
| small                                                                             |                  |
| 1, Three-phase input power is not 1, Check and elimina                            | te the problems  |
| normal in the external lines                                                      |                  |
| Err12 Input phase loss 2, The driving board exception 2, Seek technical sup       | port             |
| /Er.iLF 3, Lightning board abnormalities                                          |                  |
| 4, The main control board exception                                               |                  |
| 1, The inverter wiring is damaged 1, Excluding the exte                           | rnal fault       |
| 2, 3 phase output is not balance of 2, Check the motor t                          | three-phase      |
| Err13 Output phase loss inverter when motor running winding is normal ar          | nd               |
| 3, Driving board is abnormal troubleshooting                                      |                  |
| 4, IGBT modulel is abnormal 3, seek technical sup                                 | port             |
| 1, The ambient temperature is too high 1, Reduce the ambie                        | nt temperature   |
| Err14 IGBT module is over 2, Air duct blockage 2, Clean up the duct               |                  |
| /Er.oH1 heat 3, The fan is damaged 3, Replace the fan                             |                  |
| 4, IIGBT module thermistor is damage 4, Replace the therm                         | nistor           |
| 5, The inverter module is damaged 5, Replace the invert                           | er module        |
| 1, Through the multi-function terminal 1, Reset to factory se                     | tting            |
| Err15 External device fault DI input external fault signal 2, Reset to factory se | etting           |
| /Er.EEF 2, Through the virtual IO function input                                  |                  |
| external fault signal                                                             |                  |
| 1, The host computer is not working 1, Check the host co                          | mputer wiring    |
| properly 2, Check the commu                                                       | ınication cable  |
| Err16 Communication fail 2, The communication line is not 3, Set the communic     | ation parameters |
| /Er.CE normal correctly                                                           |                  |
| 3, Communication parameters PD                                                    |                  |
| group settings are not correct                                                    |                  |
| Contactor failure 1, The driving board and power supply 1, Replace the drive I    | board or power   |
| Err17 is not normal board                                                         |                  |
| 2, Contactor is not normal 2, Replace the conta                                   |                  |
| Err18 Current detection 1, Check the Hall device exception 1, Replace the Hall d  |                  |
| /Er.HAL failure 2, The driving board exception 2, Replace the driver              |                  |
| Motor tuning fault 1, The motor parameters are not set by Set motor paramete      | rs according to  |
| Err19 nameplate motor nameplate                                                   |                  |
| /Er.TuN 2, Parameter identification process                                       |                  |
| timeout                                                                           |                  |
| 1, The encoder model does not match 1, Check the encoder                          | •                |
|                                                                                   |                  |
| Err20 2, The encoder connection error 2, Excluding line wiri                      | =                |
|                                                                                   | der              |

| Err21   | EEPROM failures      | 1, EEPROM IC broken                        | 1, Replace the control board         |
|---------|----------------------|--------------------------------------------|--------------------------------------|
| /Er.EEP |                      | ,                                          | ,                                    |
| ,       | Inverter hardware    | 1, there is overvoltage                    | 1, Troubleshooting as over voltage   |
| Err22   | failure              | 2, there is overcurrent                    | 2, Troubleshooting as over current   |
| Err23   | Short to ground      | 1, Motor to ground short circuit           | 1, Change motor cable or motor       |
| /Er.SGd | 3                    |                                            |                                      |
| Err26   | The cumulative run   | 1, The cumulative run time is over the     | 1, Clear the record with parameters  |
| /Er.ort | time arrives         | set the value                              | initialization                       |
|         | User Defined Fault 1 | 1, User define fault signal 1 with multi-  | 1, Reset factory setting             |
| Err27   |                      | function terminals.                        | 2, Reset factory setting             |
|         |                      | 2, User define fault signal 1 with virtual |                                      |
|         |                      | IO function                                |                                      |
|         | User Defined Fault   | 1, User define fault signal 2 with multi-  | 1, Reset factory setting             |
| Err28   | 2                    | function terminals.                        | 2, Reset factory setting             |
|         |                      | 2, User define fault signal 2 with virtual |                                      |
|         |                      | IO function                                |                                      |
|         | The cumulative       | 1, The cumulative power up is over the     | 1, Clear the record with parameters  |
| Err26   | power up time        | set the value                              | initialization                       |
|         | arrives              |                                            |                                      |
| Err30   | Load missing         | 1,The running current of inverter less     | Check the load condition             |
|         |                      | than P9-64                                 |                                      |
|         | PID feedback loss    | 1, PID feedback value less than PA-        | Check the PID feedback signal or     |
| Err31   |                      | 26                                         | set PA-26 value correct              |
|         | Wave by wave         | 1, The load is too large                   | 1, Check the load                    |
| Err40   | current limit fault  | 2, The inverter selection is too small     | 2, Zoom in the inverter power level; |
|         | Motor switchover     | 1. Change the current motor                | Switch motor in stop mode of         |
| Err41   | fault                | selection through the terminal             | inverter                             |
|         |                      | during the inverter operation              |                                      |
|         | The speed            | 1, The encoder parameter setting is        | 1, Correct set encoder parameters    |
| Err42   | deviation is too     | not correct                                | 2, Motor auto tuning                 |
|         | large                | 2, No perform motor auto tuning            | 3, Set correct value for P9-69, P9-  |
|         |                      | 3, The speed deviation is too large ,      | 60 per filed condition               |
|         |                      | P9-69, P9-60 setting is                    |                                      |
|         |                      | unreasonable                               |                                      |

## Appendix 1 Instructions for Driving 1 Phase 220V Pumps

Please select one more rated power class of inverter than the motor or pump.

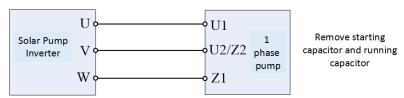

| P0-01 | 1st motor control mode                                               | 0: VF control 1: Sensorless vector control (SVC) 2: PG sensor vector control (FVC) 3: 2 wires output for single phase pumps 4: 3 Wires output for single phase pumps | 0   |
|-------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| P0-20 | Single - phase motor<br>balance coefficient (Three-<br>phase output) | 0.0 - 2.0                                                                                                                                                            | 1.0 |

It is request to set motor group parameters (P1 group) when driving 1 phase motor.

And also can adjust the output torque capacity with P3-01 parameters.

### There are 2 driving modes for using inverter to drive 1 phase motor.

1) 2 wire output mode (P0-01 = 3): This mode wiring as below:




In this control mode, the start capacitor is removed. Connect 1 phase pump to any 2 wires from U-V-W. It can get large adjusting speed range due to starting capacitor have been remove.

Through increase the value of P3-01 can increase the start torque and the starting capacity.

It is not allow to change running direction in this control mode. Please change the cable wiring to change running direction if need.

2) 3 wires output mode (P0-01 = 4): This mode wiring as below:



In this mode, the starting and running capacitor **must** be remove. Adjusting the P0-20 value can able to change the UV/ WV voltage ratio (the bigger P0-20, the bigger WV, and smaller UV).

Because the output voltage phase is difference 90°, so the output voltage can't reaches  $Udc/\sqrt{2}$ , only can reaches Udc/2 (P0-20=1.0).

The load driving capacity is not too strong compare to drive 3 phase AC pumps, and running current will be higher.

### Appendix 2 Instructions for PMSM pumps

The Procedure of operation for PMSM driving:

- 1. Set P0-01=1 and P1-00=2 parameters before PMSM running.
- 2. Set PMSM motor parameters.:P1-01 to P1-05, P1-16 to P1-20.( if the load is difficult to disconnect from motor, please set P1-20 BEF (Back Electromotive Force) accuracy from motor nameplate.
- 3. Set P1-37 for start auto-tuning.

If the performance is not good, please adjust some related parameter from P2-00 to P2-37.

There has two motor control algorithms for driving permanent magnet synchronous motor, which set by P1-00 and P0-01 both parameters.

|                | P0-01=0 ( VF scalar control ) | P0-01=1 ( Sensorless vector control ) |
|----------------|-------------------------------|---------------------------------------|
| P1-00=0/1 (IM) | Asynchronous motor VF control | Asynchronous motor vector control     |
| P1-00=2        | Permanent magnet motor        | Permanent Magnet Motor Vector         |
| (PMSM)         | scalar V/F control            | Control                               |

The vector control is superior to the scalar (V/f) control in terms of motor control performance such as low frequency torque, stability, current waveform and so on. However, the scalar control is not sensitive to the motor back EMF parameter (P1-20). The vector control requires accurate setting or identification of the motor back electromotive force; Both control algorithms need to obtain accurate stator resistance, inductance parameters (P1-16 ~ P1-18);

It is recommended sensorless vector control for driving solar PMSM pumps.

Permanent magnet motor model parameters are as follows: (obtained by parameter identification of motor auto tuning)

| P1-20 Back Electromotive Force |                   | 0.1V ~ 6553.5V                                   |
|--------------------------------|-------------------|--------------------------------------------------|
|                                |                   | inverter>55kW)                                   |
| P1-18                          | Q-axis inductance | 0.001mH ~ 65.535mH(Rated power of                |
|                                |                   | inverter<=55kW)                                  |
| P1-17                          | D-axis inductance | 0.01mH ~ 655.35mH(Rated power of                 |
|                                |                   | inverter>55kW)                                   |
| P1-16                          | Stator resistance | $0.0001\Omega \sim 6.5535\Omega$ (Rated power of |
|                                |                   | inverter<=55kW)                                  |
|                                |                   | $0.001\Omega \sim 65.535\Omega$ (Rated power of  |

Synchronous motor parameter identification: P1-16 ~ P1-20 motor model parameters can be obtained through parameter identification, the following steps:

If the control algorithm for the scalar control (P0-01 = 0), carry the static auto tuning is okay, do not need to remove the load; vector control need to obtain accurate back EMF parameters, if the application site is not easy to disconnect the load, user can set Back electromotive force by manual.

(Note: When the P1-37 set to 1,2 for the asynchronous motor auto tuning; parameters from the learning,

especially dynamic self-learning need to stabilize the power supply, the best use of AC electricity supply. Means we can do motor auto tuning with AC power input first before using in solar system.)

#### Notes:

Vector control related parameters: it is no need to adjust vector control related parameters in generally. Please see the below list.

P2-00 ~ P2-05 for the speed loop PI parameters, vector control is effective; adjust the PI parameters can get better speed control effect;

P2-13 ~ P2-16 for the axis current loop PI parameters, vector effective; adjust the parameters of the group can improve the stability, current response;

 $P2-17 \sim P2-18$  for the vector control observer (observer) parameters, adjust the observer gain can improve the stability;

P2-21: Start pull into the current size settings, vector / scalar algorithm is valid; increase the pull-in current can improve the low-frequency start torque;

P2-30 ~ P2-34 for the scalar control parameters: P2-30 oscillation suppression used to improve the stability; P2-32 excitation depth for the search to obtain the minimum current;

| P2-00                                | Speed loop proportional gain  1          | 1~100                                                            |
|--------------------------------------|------------------------------------------|------------------------------------------------------------------|
| P2-01 Speed loop integral time 1     |                                          | 0.01s ~ 10.00s                                                   |
| P2-02                                | Switching frequency 1                    | 0.00 ~ P2-05                                                     |
| P2-03 Speed loop proportional gain 2 |                                          | 1~100                                                            |
| P2-04                                | Speed loop integral time 2               | 0.01s ~ 10.00s                                                   |
| P2-05                                | Switching frequency 2                    | P2-02 ~ Maximum frequency                                        |
| P2-06                                | Slip compensation coefficient            | 50% ~ 200%                                                       |
| P2-07                                | Speed loop filter time constant          | 0.000s ~ 0.100s                                                  |
| P2-08                                | Vector control over excitation gain      | 0 ~ 200                                                          |
| P2-10                                | Current upper limit / torque upper limit | 0.0% ~ 200.0%                                                    |
| P2-13                                | M-axis current loop proportional gain    | 0 ~ 20000                                                        |
| P2-14                                | M-axis current loop integral gain        | 0 ~ 20000                                                        |
| P2-15                                | T-axis current loop proportional gain    | 0 ~ 20000                                                        |
| P2-16                                | T-axis current loop integral gain        | 0 ~ 20000                                                        |
| P2-17                                | Observer gain                            | 0.1% - 999.9%                                                    |
| P2-18                                | Observe the filter time                  | 0.1 - 100.0ms                                                    |
| P2-19                                | AM pre-excitation gain                   | 0 - 9999ms                                                       |
| P2-20                                | PM open loop start mode                  | 0: direct start; 1: position detection start 2: DC pull-in start |

|       | · '                              | •             |
|-------|----------------------------------|---------------|
| P2-21 | Pull in current                  | 0.0% - 200.0% |
| P2-22 | MTPA gain                        | 0.0% - 999.9% |
| P2-23 | MTPA filter                      | 1ms - 9999ms  |
| P2-24 | PMSM weak current limit          | 0.1% - 200.0% |
| P2-25 | PMSM Weak Magnetic               | 0.1% - 999.9% |
| PZ-23 | Feedforward Gain                 | 0.1% - 999.9% |
| P2-26 | PMSM weakening ratio gain        | 0 - 9999      |
| P2-27 | PMSM weak Magnetic Integral      | 0 - 9999      |
| PZ-21 | Gain                             | 0 - 9999      |
| P2-30 | Oscillation suppression gain     | 0.1% - 100.0% |
| P2-31 | Current loop gain                | 0.1 - 20.0    |
| P2-32 | Excitation depth                 | 0.1% - 500.0% |
| P2-33 | Excitation control proportional  | 0 - 5000      |
| PZ-33 | gain                             | 0 - 3000      |
| P2-34 | Excitation control integral gain | 0 - 5000      |
| P2-35 | DC pull time                     | 0 - 9999      |
| P2-36 | DC pull-in transition frequency  | 0.0 - 100.0%  |
| P2-37 | DC pull-in cut-off frequency     | 0.0 - 100.0%  |